КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пространственная фильтрация оптических сигналов
Основная идея оптической пространственной фильтрации в состоит в использовании различных амплитудных, фазовых или амплитудно-фазовых оптических фильтров (светофильтров, фазовых пластинок, диафрагм, голограмм и др.), размещаемых в области локализации фурье-спектра передаваемого через оптическую систему изображения. В результате двумерный фурье-спектр передаваемых сигналов заданным образом изменяется, что и обусловливает требуемое изменение формы сигналов на выходе такой оптической системы. Простейший пространственный фильтр для обработки изображений содержит две линзы с совмещенными задней (для первой линзы) и передней (для второй линзы) фокальными плоскостями, и фильтр-транспарант, расположенный в плоскости совмещения (Рис.5) Рис. 5. Схема оптической пространственной фильтрации
В передней фокальной плоскости первой линзы посредством транспаранта, освещаемого пространственно-когерентной волной, создается исходное распределение светового поля Первая линза осуществляет первое (прямое) преобразование Фурье исходной функции, при этом в ее задней фокальной плоскости формируется распределение амплитуды излучения , соответствующее пространственному спектру подводимого сигнала, В спектральной плоскости установлен пространственный фильтр с комплексной амплитудной функцией пропускания Действие такого фильтра сводится к умножению функции пропускания фильтра на распределение спектра вводимой функции, Вторая линза выполняет второе (условно обратное) преобразование Фурье, в результате чего распределение амплитуды светового поля в ее задней фокальной плоскости имеет вид На основании теоремы свертки выполняется откуда видно, что распределение комплексной амплитуды излучения в выходной плоскости оптической системы на Рис. 5 представляет собой двумерную свертку исходной функции и функции равной обратному преобразованию Фурье от функции пропускания пространственного фильтра, Функцию (29) называют импульсным откликом пространственного фильтра. Задавая различные значения функции пропускания транспаранта, устанавливаемого в плоскости системы на Рис.5, можно практически мгновенно осуществлять вычисление двойного интеграла свертки вида (28). Если пространственный фильтр отсутствует, то есть его пропускание тождественно равно единице, импульсный отклик (29) равен дельта-функции и, согласно (17) и (28), функции и идентичны. При этом в плоскости будет сформировано перевернутое изображение распределения поля в плоскости Установив в плоскости фильтр низких частот с функцией пропускания вида Рис. 6. Пример одномерной амплитудной функции пропускания пространственного фильтра низких частот.
(см. Рис. 6), в процессоре выполняется операция оконтуривания изображений. При этом распределение мощности излучения в плоскости Р3 будет отображать области наибольшего изменения амплитуды входного изображения, см. Рис. 7.
Рис. 7 Оконтуривание изображения (показан одномерный сигнал)
Амплитудный пространственный фильтр, расположенный в спектральной области на Рис. 5, может существенно изменить структуру изображения, вводимого в систему пространственной фильтрации. Это иллюстрирует эксперимент Аббе-Портера (Рис. 8). Рис. 8. Опыт Аббе-Портера
Здесь входным изображением является двумерная дифракционная решетка, пространственный спектр которой представляет собой также двумерный массив ярких «точек» (кружков Эйри) в фокальной плоскости первой линзы. Пространственный фильтр в виде щелевой диафрагмы пропускает лишь спектральные составляющие, расположенные вдоль одной из осей . В результате в выходной плоскости изображения формируется одномерная решетка, периодическая вдоль оси Наибольшее практическое применение в микроскопии биологических объектов имеет фазовый контраст, идея которого была предложена Цернике. Сущность фазового контраста состоит в использовании фазового пространственного фильтра, установленного в спектральной области оптической системы объектива микроскопа. Такой фильтр характеризуется амплитудным пропусканием вида и может быть выполнен, например, в виде диэлектрической пластинки с оптической длиной пути («толщиной»), кратной нечетному числу установленной строго в центре (в области нулевых пространственных частот) фокальной плоскости объектива микроскопа. На практике конструкция пространственного фильтра нередко содержит кольцевую фазовую пластинку, расположенную вне оптической оси. В обоих случаях назначение пространственного фильтра - ввести искусственный сдвиг фазы величиной между волнами, соответствующими пространственным частотам нулевого и остальных порядков дифракции. В результате мощность излучения в выходной плоскости изобразительной системы микроскопа зависит от фазы предметной волны, определяемой структурой прозрачного объекта - неоднородным распределением плотности его материала. Представляя предметную волну функцией вида в обычном микроскопе изображение на его выходе характеризуется распределением мощности то есть информация о фазе такой волны утрачивается. При использовании в микроскопе пространственного фильтра с функцией пропускания (31) мощность излучения в области регистрируемого изображения, как можно показать, представляется в виде Следовательно, структура прозрачных фазовых объектов (какими и являются большинство биологических объектов - клетки, хромосомы и др.) отображается в виде неоднородного распределения мощности света в области изображения, то есть становится наблюдаемой. Пространственный фильтр с комплексным пропусканием вида позволяет выполнить вычисление частной производной (дифференцирование функции) распределения на входе системы фильтрации, в соответствии со свойствами преобразования Фурье - см. 7. Выполняя обратное преобразование Фурье, с учетом (27), следует то есть амплитудный фильтр с пропусканием (35) действительно обеспечивает на выходе системы пространственной фильтрации распределение поля, соответствующее частной производной от двумерного распределения входного сигнала.
Дата добавления: 2017-01-14; Просмотров: 3565; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |