КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аналитические и имитационные модели
Детерминированные и стохастические модели
При моделировании сложных реальных систем исследователь часто сталкивается с ситуациями, в которых случайные воздействия играют существенную роль. В детерминированных моделях все факторы, оказывающие влияние на развитие ситуации принятия решения, однозначно определены и их значения известны в момент принятия решения. Стохастические модели предполагают наличие элемента неопределенности, учитывают возможное вероятностное распределение значений факторов и параметров, определяющих развитие ситуации. Следует отметить, что детерминированные модели, с одной стороны, являются более упрошенными, поскольку не позволяют достаточно полно учитывать элемент неопределенности. С другой стороны, они позволяют учесть многие дополнительные факторы, зачастую недоступные стохастическим моделям. Здесь также нередко оказывается справедливой известная закономерность: учитывая одни факторы при моделировании, мы нередко забываем о других. И это естественно. Никакая модель не может учесть абсолютно все факторы. Но профессионально разработанная модель отличается тем, что позволяет учесть наиболее существенные из них. Моделирование процесса принятия решений позволяет сделать существенный шаг в сторону количественных оценок и количественного анализа результатов принимаемых решений.
Использование абстракций при решении проблем с помощью моделей часто состоит в применении того или иного математического аппарата. Простейшими математическими моделями являются алгебраические соотношения, и анализ модели часто сводится к аналитическому решению этих уравнений. Некоторые динамические системы можно описать в замкнутой форме, например, в виде систем линейных дифференциальных и алгебраических уравнений и получить решение аналитически. Такое моделирование называется аналитическим. При аналитическом моделировании процессы функционирования исследуемой системы записываются в виде алгебраических, интегральных, дифференциальных уравнений и логических соотношений, и в некоторых случаях анализ этих соотношений можно выполнить с помощью аналитических преобразований. Современным средством поддержки аналитического моделирования являются электронные таблицы типа MS Excel. Однако использование чисто аналитических методов при моделировании реальных систем сталкивается с серьезными трудностями: классические математические модели, допускающие аналитическое решение, в большинстве случаев к реальным задачам неприменимы. Например, в модели нефтеналивного порта построить аналитическую формулу для оценки коэффициента использования оборудования невозможно хотя бы потому, что в системе существуют стохастические процессы. Есть приоритеты обработки заявок на использование ресурсов, внутренний параллелизм в обрабатывающих подсистемах, прерывания работы и т. п. Даже если аналитическую модель удается построить, для реальных систем они часто являются существенно нелинейными, и чисто математические соотношения в них обычно дополняются логико-семантическими операциями, а для них аналитического решения не существует. Поэтому при анализе систем часто стоит выбор между моделью, которая является реалистическим аналогом реальной ситуации, но не разрешимой аналитически, и более простой, но неадекватной моделью, математический анализ которой возможен. При имитационном моделировании структура моделируемой системы — ее подсистемы и связи — непосредственно представлена структурой модели, а процесс функционирования подсистем, выраженный в виде правил и уравнений, связывающих переменные, имитируется на компьютере.
Дата добавления: 2015-08-31; Просмотров: 1032; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |