Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод трапеций




Метод прямоугольников

Разобьем отрезок на равных частей при помощи точек:

, , , .

Метод прямоугольников заключается в замене интеграла суммой:

.

Для приближенных практических расчетов применяется формулы:

, (1)

. (2)

Из рисунка ясно, что если – положительная и возрастающая функция, то формула (1) выражает площадь ступенчатой фигуры, составленной из «входящих» прямоугольников, а формула (2) – площадь ступенчатой фигуры, состоящей из «выходящих» прямоугольников.

Абсолютная погрешность приближенных равенств (1) и (2) оценивается с помощью следующей формулы: , где – наибольшее значение на отрезке .

 

Разобьем отрезок на равных частей при помощи точек:

, , , .

Метод трапеций заключается в замене интеграла суммой:

.

Для приближенных практических расчетов применяется формула:

. (3)

Абсолютная погрешность приближения, полученного по формуле трапеций, оценивается с помощью формулы , где .

3. Метод парабол (метод Симпсона)

а) Через любые три точки с координатами проходит только одна парабола .

б) Выразим площадь под параболой на отрезке через :

.

Учитывая значения и из пункта а) следует:

.

в) Разобьем отрезок на равных частей при помощи точек:

, , , .

Метод парабол заключается в замене интеграла суммой:

.

Для приближенных практических расчетов применяется формула:

. (4)

Абсолютная погрешность вычисления по формуле (4) оценивается соотношением , где .




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 245; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.