Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рентгенівське випромінювання. Гальмівне і характеристичне рентгенівське випромінювання та його спектри.




Тиск світла

 

Вперше думку про тиск світла висловив Кеплер при спостереженні польоту комети. Він вважав причиною зміщення кометних хвостів у напрямі від сонця тиск світла, проте пояснити цього явища не зміг. Чимало вчених робили спробу спостереження тиску світла, та марно.

Тиск світла настільки малий, що для його надійного вимірювання необхідно було виключити вплив на тонкі пластинки всіх інших факторів. Вплив конвекційних потоків повітря був виключений Лебедєвим шляхом створення в балоні досить високого вакууму. Однак і в цьому випадку залишався не виключеним так званий радіометричний ефект.

Причина його полягає в тому, що темна пластинка нагрівається в результаті поглинання падаючого на нього світла, причому температури освітленої і неосвітленої (задньої) поверхонь пластинок не однакові. Це розходження пов'язане з передачею енергії всередині пластинки шляхом теплопровідності й залежить від товщини й матеріалу пластинки. Молекули розрідженого повітря у балоні, ударяючись об поверхні пластинок і відбиваючись від них, створюють тиск на пластинки. При ударі об більш нагріту світлом передню поверхню пластинки молекули збільшують свою енергію й відскакують із більшими швидкостями, ніж молекули, що відбиваються від задньої поверхні. Тому молекули повітря створюють результуючий тиск на темну поверхню пластинки, що додається до тиску світла. Радіометричний ефект може привести до того, що в досліді тиск на темну пластинку виявиться більшим від тиску на дзеркальну пластинку тих же розмірів.

Лебедєв виключив вплив радіометричного ефекту, використавши у своїх дослідах дуже тонкі пластинки різної товщини від 0,01 до 0,1 мм. Тиск світла на дзеркальну пластинку (з коефіцієнтом відбиття R = l) виявився вдвічі більшим, ніж тиск на темну пластинку (R = 0), що відповідає теоретичній формулі Максвелла.

З квантових уявлень виведемо формулу для тиску світла. Нехай на одиницю площі за одиницю часу падає n фотонів, частина з яких відбивається, частина − поглинається.

ρ − коефіцієнт відбиття;

ρ n − кількість фотонів, що відбилися;

(1 - ρ) n − кількість фотонів, що поглинулися.

При відбиванні передається подвійний імпульс:

− імпульс відбитих фотонів;

− імпульс поглинутих фотонів;

− тиск світла.

Остаточно отримаємо рівняння

,

де − енергія, що передається одиниці площі за одиницю часу.

Дослід Лебедєва

Якщо будь-яке тіло, що має масу та імпульс, падає на поверхню, воно чинить тиск Р, який визначається за формулою:

,

де F – сила тиску; S – площа поверхні.

Тоді, якщо світло падає на поверхню, то й фотон має діяти на неї так само, тобто чинити тиск. Вперше було експериментально встановлений і виміряний світловий тиск у 1900 році П. М. Лебедєвим (рис. 1.14). Прилад складався з легкого каркаса із закріпленими на ньому тонкими пластинками. Деякі тонкі пластинки 1 були чорними, а поверхня інших 2 була дзеркальною. Вони підвішувалися на тонкій пружній нитці 3 всередині скляного балона, з якого було відкачено повітря. Світловий тиск на пластинки визначався розміром кута, на який закручувалася нитка. З квантового погляду тиск світла на поверхню будь-якого тіла зумовлений тим, що під час зіткнення з цією поверхнею кожен фотон передає їй свій імпульс. Тиск світла можна визначити за формулою:

,

де n – кількість фотонів в одиниці об’єму випромінювання, що падає на поверхню; ρ – коефіцієнт відбиття фотонів.

Для чорної поверхні , для дзеркальної – . Таким чином, тиск світла на дзеркальну поверхню вдвічі більший, ніж на чорну. Цей висновок збігається з результатами дослідів Лебедєва. Світловий тиск дуже малий. Наприклад, сила тиску сонячних променів на 2 чорної поверхні становить .


 

У 1895 році Вільгельм Рентген, досліджуючи катодне випромінювання в круксовій трубці, помітив під час роботи самої трубки, що на відстані трьох метрів від неї відбувається освітлення люмінісцентного екрану (рис. 2.11). Досліджуючи це явище більш ретельно, Рентген встановив, що свічення екрану викликається невидимим промінням, яке було названо X-променями.

Ставлячи на шляху променів різні предмети, вчений з’ясував надзвичайну проникну здатність X -променів. Дерево, тканина, шкіра були цілком прозорими для цих променів. І лише золоті, залізні, свинцеві предмети давали на рентгенограмах деяке послаблення рентгенівських променів.

За проникною здатністю розрізняють м’які та жорсткі Х - промені. М’які рентгенівські промені виникають при напрузі між катодом і анодом порядку 20-40 кВ, а жорсткі − коли різниця потенціалів становить порядку 40-400 кВ.

Поглинання рентгенівського проміння в речовині характеризується товщиною шару половинного поглинання, тобто товщиною шару однорідної речовини, який вдвічі зменшує інтенсивність падаючих променів. Наприклад, для жорстких променів товщина шару половинного поглинання для свинцю становить 0,016 см, для алюмінію – 1,6 см, для води – 4,3 см. У цілому ж рентгенівські промені поглинаються за законом:

,

де І0 і І – інтенсивність рентгенівського випромінювання до і після проходження ним шару речовини завтовшки d; µ – лінійний коефіцієнт поглинання, що залежить від природи речовини.

Рентгенівське випромінювання − це електромагнітна хвиля довжиною від 80 нм до 0,1 нм. Існує два види рентгенівського випромінювання: гальмівне та характеристичне. Для гальмівного спектр має суцільний характер, тоді як характеристичне випромінювання має лінійчатий спектр.

Виникнення суцільного (гальмівного) випромінювання пояснюється гальмуванням електронів у момент потрапляння їх на анод. Оскільки навколо рухомих електронів є магнітне поле, завдяки різкій зміні швидкості електронів різко змінюється магнітне поле, що породжує електромагнітну хвилю.

Характеристичне рентгенівське випромінювання виникає внаслідок того, що потужне катодне випромінювання “примушує” електрони переміщатися з однієї оболонки на іншу, таким чином виникає лінійчатий спектр, який характеризує речовину, з якої виготовлений анод.

 




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 82; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.