КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электронно-дырочный переход
Рассмотрим процессы в n - p -переходе в равновесном состоянии, то есть при отсутствии внешнего источника напряжения (рис.1.1). Так как носители заряда совершают беспорядочное тепловое движение, то происходит их диффузия из одного полупроводника в другой. Концентрация электронов в n -слое больше, чем в p-слое, и часть электронов перейдет из n-слоя в p-слой. Одновременно наблюдается диффузионный переход дырок из p -слоя в n -слой. В результате в n -слое остается нескомпенсированный объемный заряд положительных ионов донорной примеси, а в p-слое - нескомпенсированный объемный заряд отрицательных ионов акцепторной примеси. Между образовавшимися объемными зарядами возникает контактная разность потенциалов и электрическое поле напряжен-ностью Ек. На потенциальной диаграмме n-p-перехода (рис.1.1б) за нулевой потенциал принят потенциал граничного слоя. В n-p-переходе возникает потенциальный барьер, препятствующий диффузионному перемещению носителей заряда. Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. На рис.1.1 б изображен барьер для электронов, стремящихся за счет диффузии перемещаться из области n в область p. Таким образом, в n-p-переходе вследствие ухода электронов и дырок вглубь p- и n-областей образуется обедненный зарядами слой, называемый запирающим и обладающий большим сопротивлением в сравнении с сопротивлением остальных объемов n- и p-областей. Если источник внешнего напряжения положительным полюсом подключить к полупроводнику p-типа и отрицательным к n-типа (прямое включение), то электрическое поле, создаваемое в n-p-переходе прямым напряжением Uпр, действует навстречу контактной разности потенциалов Uк. Потенциальный барьер понижается до величины Uк-Uпр, уменьшаются толщина запирающего слоя и его сопротивление Rпр. Если полярность внешнего источника изменить на обратную, то потенциальный барьер возрастает до величины Uк+Uобр. В этом случае через переход могут пройти только неосновные носители: электроны из p-области в n-область и дырки во встречном направлении. Так как концентрация основных носителей заряда на насколько порядков выше концентрации неосновных, то прямые токи на несколько порядков больше обратных. Таким образом, электронно-дырочный переход обладает свойством односторонней проводимости. Зависимость тока через p-n переход от приложенного напряжения называется вольтамперной характеристикой (ВАХ) электронно-дырочного перехода. Она имеет вид I = I0 [exp (U/jT) – 1], где I0 – обратный ток насыщения при |–U| >> jT; jT –температурный потенциал. На рисунке 1.2 приведена ВАХ p-n перехода при различных масштабах по осям для положительных (миллиамперы) и отрицательных (микроамперы) значений токов. При увеличениипрямого напряжения Uпр прямой ток Iпр увеличивается по экспоненте, так как с увеличением Uпр снижается потенциальный барьер и увеличивается диффузия основных носителей. Величина обратного тока зависит от температуры (на графике Т2 > Т1), причем при |Uобр| >> jT ток I0 не зависит от обратного напряжения, а обусловлен концентрацией неосновных носителей заряда. Основные параметры p-n перехода: а) сопротивление по постоянному току и по переменному току (дифференциальное); б) барьерная ёмкость(обусловлена наличием зарядов ионов в запирающем слое в условиях равновесия и при обратном смещении перехода) и диффузионная (обусловлена изменением зарядов в переходе за счёт инжекции основных носителей при прямом смещении): в) температурная зависимость обратного тока. В p-n переходе возможны пробои – резкое уменьшение обратного сопротивления и резкое возрастание обратного тока при незначительном увеличении напряжения. Различают два вида пробоя: а) тепловой – в результате недостаточного теплоотвода, когда рассеиваемая мощность на переходе больше мощности отводимой. Пробой необратим, прибор выходит из строя; б) электрический пробой связан с увеличением напряженности в запирающем слое. Электрический пробой подразделяется на два вида: а) лавинный пробой заключается в размножении носителей в сильном электрическом поле за счёт ударной ионизации; б) туннельный пробой (зенеровский) – в полупроводниках с высокой концентрацией примеси под действием напряженности поля возникает туннельный эффект, т.е. просачивание электронов сквозь потенциальный барьер (если толщина барьера мала) без затраты дополнительной энергии. Туннельный эффект возможен при обратном и небольшом прямом напряжениях, пока дно зоны проводимости ниже потолка валентной зоны.
Дата добавления: 2017-02-01; Просмотров: 60; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |