КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Критерий Фишера в парной регрессии
F1 - число степеней свободы большей дисперсии, f2 - число степеней свободы меньшей дисперсии Экстраполяция Экстраполяция (от экстра... и лат. polio — приглаживаю, выправляю, изменяю) в математике и статистике, приближённое определение значений функции f (x) в точках х, лежащих вне отрезка [ x0, xn ], по её значениям в точках x0 < x 1 <... < xn. Наиболее распространённым видом Э. является параболическая Э., при которой в качестве значения f (x) в точке х берётся значение многочлена Pn (х) степени n, принимающего в n + 1 точке xi заданные значения yi = f (x). Для параболической Э. пользуются интерполяционными формулами.
Интерполя́ция, интерполи́рование — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Многим из тех, кто сталкивается с научными и инженерными расчётами часто приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных. Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.
Значения критерия Фишера (F -критерия) для уровня значимости p = 0.05
С помощью критерия Фишера оценивают качество регрессионной модели в целом и по параметрам. Для этого выполняется сравнение полученного значения F и табличного F значения. F-критерия Фишера. F фактический определяется из отношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы: где n - число наблюдений; F табличный - это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а. Уровень значимости а - вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0,05 или 0,01. Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии. Таблицы по нахождению критерия Фишера и Стьюдента Таблицы значений F-критерия Фишера и t-критерия Стьюдента Вы можете посмотреть здесь. Табличное значение критерия Фишера вычисляют следующим образом: 1. Определяют k1, которое равно количеству факторов (Х). Например, в однофакторной модели (модели парной регрессии) k1=1, в двухфакторной k=2. 2. Определяют k2, которое определяется по формуле n - m - 1, где n - число наблюдений, m - количество факторов. Например, в однофакторной модели k2 = n - 2. 3. На пересечении столбца k1 и строки k2 находят значение критерия Фишера Для нахождения табличного значения критерия Стьюдента определяют число степеней свободы, которое определяется по формуле n - m - 1 и находят его значение при определенном уровне значимости (0,10, 0,05, 0,01).
Дата добавления: 2017-02-01; Просмотров: 87; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |