КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операции дисконтирования
Для многих финансовых операций необходимо использовать данные о приведенных или современных денежных величинах, как разовой суммы, так и потоков фиксированных периодических платежей. Для облегчения расчетов используется функция ПЗ – первоначальное значение (PV). Аргументы функции:
Этот расчет является обратным к определению наращенной суммы при помощи функции БЗ, поэтому сущность используемых аргументов в этих функциях аналогична. Вместе с тем, вводится новый аргумент БС – будущая стоимость или будущее значение денежной суммы (FV), а также иное обозначение числа периодов – кпер – (n или n • m). Рассматриваемая функция может быть использована для расчета по простым и сложным процентам. Пример. Через 125 дней следует накопить сумму в размере 2,5 тыс. руб. Какой должен быть размер вклада, размещаемый под 5%? Решение: Определяем первоначальную сумму долга:
*Положительное значение означает поступление денег. Значение -2457,34 10>>> На указанных условиях следует положить 2'457,34 руб., что позволит через 125 дней получить 2'500,00 руб.
Текущее значение единой суммы вклада с использованием сложных процентов и неоднократным начислением процентов в течение года рассчитывается аналогично.
Пример. Требуется получить на лицевом счете 50 тыс. руб. через три года. Выбрать варианты размещения средств:
Решение: Используем функцию ПЗ. Для первого варианта:
Значение -24015,93. Для второго варианта:
Значение -24848,47. Таким образом, предпочтителен первый вариант, поскольку имеет меньшую первоначальную величину.
При определении современной величины аннуитета следует помнить, что чем дальше отстоит от настоящего момента член ренты, тем меньшую текущую стоимость он представляет.
Пример. Какую сумму необходимо положить в банк, чтобы в течение 8 лет в начале каждого года снимать по 24 тыс. руб., если процентная ставка составляет 6% годовых? Решение:
Значение -157977,15. Таким образом, чтобы иметь возможность ежегодно в начале года в течение 8 лет снимать по 24'000,00 руб., необходимо положить 157'977,15 руб.
Если функция ПЗ используется при расчете аннуитетов, то функция НПЗ используется для переменной ренты, т.е. для ренты с неравными членами.
Дата добавления: 2014-01-04; Просмотров: 301; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |