Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема Абеля


Якщо степеневий ряд збіжний при , то він абсолютно збіжний для всіх значень х, що задовольняють нерівність , тобто збіжний на інтервалі . Такий інтервал називається інтервалом збіжності ряду, а число називається радіусом збіжності степеневого ряду.

 
 


розб збіг розб

0 х


Інтервал збіжності можна записати у вигляді (- R; R)

 

Метод знаходження інтервала збіжності степеневого ряду

 

Нехай дано степеневий ряд . Для знаходження інтервала збіжності застосовують ознаку Д’Аламбера.

Для того, щоб ряд був збіжним, потрібно, щоб одержаний вираз був меншим 1, тобто

- інтервал збіжності ряду

Для знаходження області збіжності потрібно дослідити поведінку ряду на кінцях інтервалу. Для цього замість х в степеневий ряд підставляють значення і і досліджують одержані числові ряди на збіжність.

Приклад: знайти область збіжності степеневого ряду

- інтервал збіжності

R = 3

Перевіримо поведінку ряду на кінцях інтервалу:

а) при х = 3 не виконується необхідна ознака збіжності, тобто 1=1, отже ряд розбіжний.

Значить правий кінець інтервалу не входить в область збіжності.

б) при х = - 3

одержали ряд, знаки якого строго чергуються; застосуємо ознаку Лейбніца:

1 = 1=1 = ... – модулі членів ряду не спадають, значить ряд розбіжний.

Тобто, лівий кінець інтервалу не входить в область збіжності.

Відповідь: областю збіжності степеневого ряду є інтервал ( - 3; 3)

 
 


розб збіг розб

- 3 0 3 х

2. Розглянемо степеневий ряд за степенями :

Нехай функція f (x) є сумою ряду на інтервалі :

Нехай існують всі похідні функції f (x) і значення самої функції в точці . Знайдемо коефіцієнти цього ряду, послідовно диференцюючи ряд і підставляючи в знайдені похідні значення .

 
 

 


Знайдемо

 
 

 

 


 
 

 

       
   
 
 




...

 

 
 


Тоді

 

 

Степеневий ряд прийме вигляд:

0, 1, 2, ... – ряд Тейлора.


Теорема (про достатні умови розкладання функції в ряд Тейлора)

Якщо функція f (х) в інтервалі має похідні всіх порядків та існує число M > 0 таке, що модуль кожної похідної буде меншим від М.

, то функцію f (x) можна розкласти в ряд Тейлора.

Якщо в ряді Тейлора приймемо , то одержимо ряд Маклорена:

Степеневі ряди застосовуються для наближених обчислень, для розв’язування диференціальних рівнянь, для обчислення визначених та невизначених інтегралів.

 

3. Щоб функцію f (x) розкласти в ряд Маклорена, потрібно:

1) знайти похідні

2) обчислити значення похідних в точці х = 0

3) записати ряд Маклорена для даної функції і знайти інтервал його збіжності;

4) визначити інтервал ( - R; R) в якому залишковий член формули Маклорена при .

Приклади:

 

1)

...

Область збіжності ряду

 

2)


3)

 

4) Біноміальний ряд

,

 

Область збіжності

 

5)

n = 0, 1, 2, ...

 

Область збіжності ( -1; 1]

 

6)

n = 1, 2, 3 …

 

Область збіжності [ -1; 1]

 

 

<== предыдущая лекция | следующая лекция ==>
П Л А Н. 2. Збіжність рядів, властивості збіжних рядів | П Л А Н. 1. Теорема Абеля. Радіус збіжності ряду

Дата добавления: 2014-01-04; Просмотров: 283; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.012 сек.