Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение плоскости в отрезках. В §36 (36.2) было показано, что уравнение плоскости, не параллельной ни одной из координатных осей и не проходящей через начало координат





В §36 (36.2) было показано, что уравнение плоскости, не параллельной ни одной из координатных осей и не проходящей через начало координат, можно свести к виду:

 
 

 

 


(36.6)

 

y

b

a

 

x рис.38.2

Положим что y=z=0, получим :

x=a, т.е. точка оси ОХ с координатами (a,0,0) лежит на плоскости. Аналогично

получим , что точки с координатами (0,b,0) и (0,0,c) так же находятся на плоскости( см. рис.38.2). Тогда a,b и с (точнее ) это длины отрезков, отсекаемых нашей плокостью от координатного тетраэдра.(см. рис 38.2).

Определение 38.1. Поэтому равенство (36.6) называетсяуравнением плоскости « в отрезках»





Дата добавления: 2014-01-04; Просмотров: 197; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.