Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Другие комбинации и схемы более высокого порядка точности

In Eq. (5.3.1) we considered the value of our function at one grid point forward in ∆x. We could just have easily taken a step backwards to get

 

 

If we truncate at order ∆x2 and above we still get a first order approximation for the Backward space step (BS)

 

 

which isn’t really any better than the forward step as it has the same order error (but of opposite sign). We can do a fair bit better however if we combine Eqs. (5.3.1) and (5.3.5) to remove the equal but opposite 2nd order terms. If we subtract (5.3.5) from (5.3.1) and rearrange, we can get the centered space (CS) approximation

 

 

Note we have still only used two grid points to approximate the derivative but have gained an order in the truncation error. By including more and more neighboring points, even higher order schemes can be dreamt up (much like the 4th order Runge Kutta ODE scheme), however, the problem of dealing with large patches of points can become bothersome, particularly at boundaries. By the way, we don’t have to stop at the first derivative but we can also come up with approximations for the second derivative (which we will need shortly). This time, by adding (5.3.1) and (5.3.5) and rearranging we get

 

 

This form only needs a point and its two nearest neighbours. Note that while the truncation error is of order ∆x2 it is actually a 3rd order scheme because a cubic polynomial would satisfy it exactly (i.e. fxxxx = 0).

 

Направленная вперед по времени центральная по пространству схема

 

I will show you a simple, easily coded and totally unstable technique known as forward-time centered space or simply the FTCS method. If we consider the canonical 1-D transport equation with constant velocities (5.2.2) and replace the time derivative with a FT approximation and the space derivative as a CS approximation we can write the finite difference approximation as

 

 

or rearranging for cn+1 j we get the simple updating scheme

 

 

where

 

is the Courant number which is simply the number of grid points traveled in a single time step.

 

 

<== предыдущая лекция | следующая лекция ==>
Численные методы решения уравнения адвекции | Анализ устойчивости численных схем
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 311; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.