КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекція 44. Подвійні інтеграли
План Лекция 44. Двойные интегралы Питання Умови незалежності криволінійного інтегралу ІІ роду від шляху інтегрування. Ознака точного диференціалу Нехай - деяка звязана область. Нехай на цій області визначені неперервні функції. Нехай і - дві довільні точки з області, - довільна крива, яка зєднує і і цілком знаходиться в. Питання: Коли значення інтеграла
(60)
не залежить від форми шляху, тобто однозначно визначається тільки точками і? Теорема. Для того, щоб інтеграл (60) не залежав від шляху інтегрування, необхідно і достатньо, щоб диференціальний вираз був в області диференціалом від деякої функції:
,
тобто.
Припустимо, що в області неперервні не тільки самі функції, а і. Якщо, тобто, то
.
Оскільки - неперервні, то неперервні і мішані похідні другого порядку, а тому, з чого витікає: . (70)
Умова (70) – це необхідна умова того, щоб вираз був в області повним диференціалом. Можна показати, що (70) – це і достатня умова в випадку однозвязності. Таким чином, має місце наступна теорема. Теорема. Для того, щоб криволінійний інтеграл ІІ роду (60), де б в області не були взяті точки і, не залежав від форми шляху, необхідно, а якщо - однозвязна обасть, і достатньо, щоб виконувалась умова (70).
Пусть в области определена функция. Разобьем область кривыми на конечное количество частей,,...,, площади которых соответственно обозначим (рис.1). В каждой подобласти выберем произвольно точку, вычислим значение функции в этих точках. Сумму
будем называть интегральной суммой для в области. Обозначим: .
Рис.1.
Определение. Если существует, который не зависит ни от того, как область разбивалась на части, ни от того, как выбирались промежуточные точки, то этот предел называется двойным интегралом от функции в области и обозначается:
.
Геометрический смысл двойного интеграла. Рассмотрим тело, которое сверху ограниченно поверхностью, снизу - плоской фигурой, которая находится на координатной плоскости ХОУ, по бокам - цилиндрической поверхностью с образующей, параллельной оси OZ(рис.1). Тогда значение двойного интеграла - это объем тела (рис.1).
Пусть тело в трехмерном пространстве ограничено плоскостями. Предположим, что сечение тела плоскостью, перпендикулярной к оси ОХ, которая пересекает эту ось в точке с абсциссой (), имеет площадь. Тогда, как известно из темы «Применение интеграла Римана», объем тела будет вычисляться по формуле:
. (5)
Воспользуемся этой формулой для объема цилиндрического тела. Пусть сначала в его основе будет прямоугольник (рис.2). Сечение тела плоскостью является криволинейной трапецией,проекция которой на координатную плоскость - (рис.2). Площадь полученного сечения будет равняться:
. (10)
Формула (10) имеет место для любого, поэтому
. (20)
Подставляя (20) в (5), получим:
. (30)
Учитывая геометрический смысл двойного интеграла, из формулы (30) получим:
. (40)
Формула (40) является формулой сведения двойного интеграла к повторному в случае, когда область.
Рис.2.
Пусть теперь область на ХОУ является криволинейной трапецией І типа и ограничена кривыми
(рис.3). Этот случай отличается от предыдущего тем, что раньше для каждого фиксированного значения изменялись на, а теперь, поэтому
.
Тогда . (50)
Формула (50) является формулой сведения двойного интеграла к повторному в случае, когда область является криволинейной трапецией І типа. Пусть теперь область на ХОУ является криволинейной трапецией ІІ типа (рис.4), тогда имеет место следующая формула сведения двойного интеграла к повторному:
. (60)
Если область на ХОУ является одновременно как криволинейной трапецией І, так и ІІ типа, то для вычисления двойного интеграла можно пользоваться формулами (50), (60) и при этом:
. (70)
Формула (70) - это формула замены порядка интегрирования.
Дата добавления: 2014-01-04; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |