КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные свойства неопределённого интеграла
Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.
1. Производная от неопределенного интеграла равна подынтегральной функции, дифференциал от неопределенного интеграла равен подынтегральному выражению: , Доказательство. Пусть . Тогда , . ⊠
2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной: Доказательство. Действительно, так как .
Например, . ⊠
3. Постоянный множитель можно выносить за знак неопределенного интеграла: . Доказательство. Действительно, пусть — первообразная функции : | = . Тогда — первообразная функции : . Отсюда следует, что . где . ⊠
4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций.
Доказательство. Доказательство проведем для двух функций. Пусть и — первообразные функций и : ,. Тогда функции являются первообразными функций . Следовательно, ⊠
5. Если — первообразная функции , то . Доказательство. Действительно, . ⊠
6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:
где — дифференцируемая функция.
В отличие от дифференциального исчисления, где, пользуясь таблицей производных, можно найти производную или дифференциал любой заданной функции, в интегральном исчислении нет общих приемов вычисления неопределенных интегралов, а разработаны лишь частные методы, позволяющие свести данный интеграл к табличному.
Дата добавления: 2014-01-04; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |