КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Необходимый признак сходимости рядя
Теорема (необходимый признак сходимости): Если ряд сходится, то предел его общего члена стремится к нулюпри , тоесть (10.2) Пусть ряд сходится. Это значит, что и (на сходимость ряда не влияет отбрасывание конечного числа членов). Рассматривая разность этих пределов, видим, что или , но , значит . Этот результат следует из условия, что ряд сходится. Следствие: Если условие (10.2) не выполняется, то ряд расходится Пример 10.4. Может ли сходиться ряд ? Решение, Проверим, выполняется ли условие (10.2). Найдем . Значит, ряд расходится. Подчеркнем, что условие (10.2) является лишь необходимым, но не достаточным условием сходимости. Есть ряды, для которых это условие выполняется, но ряды расходятся. Таковым является, например, гармонический ряд .И хотя , этот ряд расходится. Покажем, что гармонический ряд расходится. Для чего запишем его таким образом и составим вспомогательный ряд, заменив все предшествующие дроби, стоящие в скобках, на последнюю в каждой скобке дробь, чтобы всеих суммы были равны Так как , то вспомогательный ряд не может сходиться, он расходится. Но члены гармонического ряда не меньше соответствующих типов вспомогательного расходящегося ряда, значит, для него тем более и потому гармонический ряд расходится. Любопытно отметить, что возрастают очень медленно, подсчитано, что . Этот результат для нас важен потому, что мы многие ряды можем сравнивать с гармоническим, о чем скажем дальше.
Дата добавления: 2014-01-04; Просмотров: 255; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |