КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операции над множествами. Понятие множества. Операции над множествами
Понятие множества. Операции над множествами Понятие множества является первичным, не определяемым через более простые. Множество – это совокупность некоторых объектов. Эти объекты, называют элементами, или точками, этого множества. Это может быть множество точек окружности, множество предприятий отрасли, множество студентов в аудитории и т.п. Примеры множеств: А = {Иванов, Смирнов, Петров, Сидоров} B = {k, m, n} C = {5; -7; 0,9; 100; 8} D - множество чисел от 5 до 10 E = {Иванов} F - множество чисел от 7 до 100 G = {Соколов, Кузнецов} N – множество натуральных чисел и т.д. Множества могут включать любое количество элементов – один (Е), другое конечное число (A, B, C, E, G), бесконечное число (D, F, N) либо ноль, т.е. вообще ни одного элемента. В последнем случае множество называют пустым и обозначают Æ.
Говорят, что элемент множества принадлежит этому множеству. Для обозначения принадлежности используется символ «Î» (если элемент не принадлежит множеству, это обозначают символом «Ï»). Например, Если одно множество состоит из части элементов другого или совпадает с ним, то первое из них называют подмножеством второго и записывают это с помощью символа «Ì». Например, Е – подмножество А, т.е. Е Ì А. Два множества называются равными, если они состоят из одних и тех же элементов. Объединением двух множеств называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из данных множеств. Оно обозначается символом «È». Например, DÈF - множество чисел от 5 до 100. Пересечением двух множеств называется множество, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств. Оно обозначается символом «Ç». Например, DÇF - множество чисел от 7 до 10; CÇD = {5; 8}; АÇЕ = {Иванов}; АÇG = Æ. Разностью множеств называется множество, состоящее из всех элементов, принадлежащих первому из них, которые не принадлежат второму. Она обозначается символом «\». Например, {Смирнов, Петров, Сидоров}; С\D = {-7; 0,9; 100}. Дополнением множества, которое является подмножеством другого множества, называют множество, состоящее из всех элементов второго множества, не принадлежащих первому. Например, для Е Ì А дополнением Е до А будет множество {Смирнов, Петров, Сидоров} =А\Е.
Множества, элементами которых являются действительные[1] числа, называются числовыми. Например, C, D, F, N – числовые множества. Из школьного курса алгебры известны числовые множества: R - действительных чисел, Q - рациональных, I - иррациональных, Z - целых, N — натуральных чисел. Очевидно, что NÌZÌQÌR, IÌR, R=QÈI. Множество действительных чисел R изображается точками числовой прямой (или числовой оси), т.е. прямой, на которой выбрано начало отсчета, положительное направление и единица масштаба. Между множеством действительных чисел и точками этой прямой существует взаимно однозначное соответствие, т.е. каждому действительному числу соответствует определенная точка числовой прямой, и наоборот, каждой точке прямой — определенное действительное число (см. рис. 1.1). Поэтому часто вместо "число х" говорят "точка х".
Множество, элементы которого удовлетворяют неравенству a £ x £ b, называется отрезком (или сегментом) [а; b]; неравенству а < х < b - интервалом ]а; b[[2]; неравенствам а£х<b или а<х£Ь, называются полуинтервалами соответственно [а; b[ и ]а; b]. Наряду с этим рассматриваются бесконечные интервалы и полуинтервалы ]-¥; а[, ]b; +¥[,
Дата добавления: 2014-01-04; Просмотров: 591; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |