Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Методом наименьших квадратов


Обработка экспериментального графика

Зависимость измеряемой величины у от условий опыта х может быть найдена графически, если нанести значения х и у на миллиметровую бумагу и построить плавную кривую так, чтобы точки равномерно распределились по обе стороны кривой

(рис. 1). Задача состоит в том, чтобы по результатам опытов построить такую кривую у = f(x), относительно которой разброс (отклонения) экспериментальных точек был бы минимальным.

Tеория вероятности показывает, что наилучшее приближение к истинной зависимости у = f(x) дает кривая, построенная методом наименьших квадратов. В этом случае сумма квадратов отклонений экспериментальных значений уi от кривой у = f(x) будет минимальна. Отсюда и происходит название данного метода обработки результатов эксперимента.

1. Рассмотрим применение метода наименьших квадратов для случая, когда между измеряемыми величинами хиу существует линейная зависимость

. (1)

 

Рис. 1. Метод наименьших квадратов

 

 

Пусть в результате эксперимента получено п различных значений величины уi, соответствующих различным значениям величины хi . Найдем коэффициент b, при котором экспериментальные точки уi будут иметь наименьшие отклонения Δуi относительно прямой.

Отклонение каждого значения уi от прямой у = bх будет

. (2)

Составим сумму квадратов отклонений:

(3)

Отклонение (разброс) измеренных значений уi от функции у = f(x) будет минимальным, если

(4)

Дифференцирование (3) по переменной b (предположив, что все остальные величины постоянны) с учетом (4) дает

или (5)

Отсюда определяем искомый коэффициент b.

(6)

2. В случае линейной зависимости между величинами х и у, которая аппроксимируется прямой, не проходящей через начало координат,

y = a + bx, (7)

 

 

коэффициенты а и b могут быть вычислены по формулам

 

 

       
   
 


(8)

 

Пример: предположим, что мы провели эксперимент и получили данные, которые занесли в табл. 1.



 

Таблица 1

Номер измерения i
xi 1,0 1,9 3,1 4,0 4,9  
yi 1,6 2,5 3,0 3,7 4,6

Для упрощения расчетов составим вспомогательную таблицу и заполним ее.

 

 

Таблица 2

Номер измерения i xi yi xi уi xi2
1,0 1,6 1,6 1,0
1,9 2,5 4,75 3,61
3,1 3,0 9,3 9,61
4,0 3,7 14,8 16,0
4,9 4,6 22,54 24,01
Σ 14,9 15,4 52,99 54,23

 

 

Рассчитаем коэффициенты а и b

     
 
 
 

 


Таким образом, уравнение прямой будет выглядеть следующим образом: у = 0,928 + 0,722 х .

Для построения отрезка прямой линии найдем две точки,

у1 = 0,928. Вторую точку получим, подставив в уравнение прямой значение х, равное, например, 5.

у2 = 0,928 + 0,722 5 = 4,538 .

На листе миллиметровой бумаги проведем оси координат, причем ось у проведем вертикально, а ось х – горизонтально.

 

 

Рис. 2

Выберем и нанесем на оси координат масштаб так, чтобы наши экспериментальные точки располагались на графике наилучшим образом – занимали на графике максимальную площадь. Нанесем на график экспериментальные точки и две точки у1 и у2, рассчитанные нами (рис. 2). Для обозначения экспериментальных и «теоретических» точек используем разные обозначения (кружки, крестики, треугольники и т. п.).

Через две «теоретических» точки проведем отрезок прямой линии. При правильных расчетах линия пройдет на графике наилучшим образом, так, что экспериментальные точки будут располагаться справа и слева от прямой. Все построения желательно делать карандашом.

 

 

Список рекомендуемой литературы

 

1. Братухин Ю. К. Обработка результатов измерений: учеб. пособие / Ю.К.Братухин, Г.Ф.Путин, – Пермь.: Изд-во Перм. гос. ун-та, 1988.– 44 с.

2. Колесниченко В.И. Обработка и представление результатов эксперимента. / В.И.Колесниченко – Пермь; – Перм.. гос. техн. ун-т, 2000. – 74 с.

 

3. Сборник методических рекомендаций к лабораторным работам по физике. 1. Механика: учеб.пособие / под ред. В.М. Коровина, – Перм. гос. ун-т. – Пермь, 1997.- 87 с.

4. Зайдель А.Н. Ошибки измерений физических величин: учеб. пособие / А.Н.Зайдель. – Л.: Наука, 1985.– 108 с.

5. Общий физический практикум. Механика / Под ред. А.Н. Матвеева, Д.Ф. Киселева. – М.: Изд-во МГУ, 1991.– 272 с.

6. Савельев И. В. Курс физики. Т. 1. Механика : учеб. пособие / И.В. Савельев. – М.: Наука, 1989.– 496с.

7. Сивухин Д.В. Общий курс физики. Т.1.: учеб. пособие / Д.В.Сивухин. – М.: Наука, 1989.– 576 с.

8. Общая физика. Ч.2. Молекулярная физика и термодинамика: учеб. пособие / под ред. Ю.Л. Райхера, Перм. политехн. ин-т. – Пермь, 1998. – 81с.

Содержание

Основные правила работы в лабораториях кафедры прикладной

физики……………………………………………………………………3

Введение в обработку результатов измерений… ………………….....6

Лабораторная работа № 1. Статистика времени реакции человека….16

Лабораторная работа № 2. Определение плотности твердого тела….19

Лабораторная работа № 3. Измерение ускорения свободного

падения с помощью машины Атвуда…………………………………23

Лабораторная работа № 4. Маятник Обербека……………………….32

Лабораторная работа № 5. Физический маятник…………………….44

Лабораторная работа № 6. Определение момента инерции тел

методом колебаний. Теорема Штейнера……………………………..52

Лабораторная работа № 7. Изучение прецессии гироскопа…………63

Лабораторная работа № 8. Определение коэффициента вязкости

жидкости методом Стокса…………………………………………….70

Лабораторная работа № 9. Измерение коэффициента трения………81

Лабораторная работа № 10. Исследование упругих колебаний…… 89

Приложение……………………………………………………………96

Список рекомендуемой литературы……………………………… 100



 

 

<== предыдущая лекция | следующая лекция ==>
Порядок выполнения работы. Задание I.Определение коэффициента упругости стержня | До постклітинних структур у людини відносять

Дата добавления: 2014-01-04; Просмотров: 360; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.009 сек.