Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнения динамики относительного движения материальной точки. Силы инерции

Центр масс. Теорема о движении центра масс.

Центром масс (центром инерции) тела называется точка С, вектор положения которой задается формулой

(или, для системы точек,), (5.6)

где - масса всего тела, - вектор положения элемента.

Далее будем рассматривать закрытое тело.

Перепишем определение (5.6) в виде и продифференцируем по времени:

.

Получили, что количество движения (импульс) тела равен произведению массы тела на скорость центра масс:

(5.7)

Подставляя это выражение в закон (5.1), будем иметь

, (5.8)

и, сравнивая с уравнением второго закона Ньютона, приходим к теореме о движении центра масс: центр масс тела движется как материальная точка с массой всего тела под действием силы, равной главному вектору внешних сил.

Если, то скорость центра масс постоянна,

Другой пример. Из школьной физики известно, что при пренебрежении сопротивлением воздуха траектория снаряда, на которого действует сила тяжести – парабола. Из (5.8) следует, что при его взрыве в полете центр масс разлетевшихся осколков будет двигаться по той же траектории.

 

Центр масс обладает любопытным свойством: величина

(или)

- сумма произведений масс точек тела на квадраты расстояний до точки А, называемая полярным моментом инерции тела в точке A, минимальна, если в качестве точки А взять центр масс; иными словами, если в качестве меры расстояния принять произведение массы на квадрат расстояния до точки, то центр масс – точка, «ближайшая» ко всем точкам тела.

Заменим квадрат модуля скалярным произведением

 

 

и, рассматривая как функцию, найдем дифференциал

.

Необходимое условие экстремума (в данном случае минимума) – равенство, откуда вследствие произвольности получим

Как уже отмечалось, уравнение 1-го ФЗМ для материальной точки имеет вид второго закона Ньютона (точку считаем закрытым телом)

. (5.9)

По теореме о сложении ускорений,

поэтому (5.9) можем записать в виде

, (5.10)

где величины по определениюназываются соответственно переносной и кориолисовой силами инерции.

Эти силы называют Эйлеровыми силами инерции, поскольку Эйлер получил их формулы в своих исследованиях законов движения жидкости во вращающихся каналах.

Силы инерции тождественно равны нулю в системах отсчета, движущихся поступательно и равномерно относительно исходной инерциальной. Эти системы образуют класс инерциальных систем отсчета.

Если наблюдатель в какой-либо системе отсчета обнаружит явления, противоречащие законам механики, в которых движения тел зависят от воздействий со стороны других физических тел, то либо не все воздействия учтены, либо его система отсчета неинерциальная.

<== предыдущая лекция | следующая лекция ==>
Пример. Уравнение Мещерского. Формула Циолковского | Маятник Фуко (точное решение линейной задачи)
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.