Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Момент силы и момент импульса относительно неподвижного начала




Общефизический закон сохранения энергии

Классическая механика учитывает только кинетическую энергию макроскопического движения тел и их макроскопических частей, а также их потенциальную энергию. Но она полностью отвлекается от внутреннего атомистического строения вещества. При ударе, трении и аналогичных процессах кинетическая энергия видимого движения тел не пропадает. Она только переходит в кинетическую энергию невидимого беспорядочного движения атомов и молекул вещества, а также в потенциальную энергию их взаимодействия. Эта часть энергии получила название внутренней энергии.

Беспорядочное движение атомов и молекул воспринимается нашими органами чувств в виде тепла.

Таково физическое объяснение кажущейся потери механической энергии при ударе, трении и пр.

В физике закон сохранения энергии распространяют не только на явления, рассматриваемые в механике, но на все без исключения процессы, происходящие в природе.

Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую.

В основе закона сохранения энергии лежит такое свойство времени как однородность, т.е. равнозначность всех моментов времени, заключающаяся в том, что замена момента времени t 1 моментом времени t 2, без изменения значений координат и скоростей тел не изменяет механических свойств системы. Поведение системы, начиная с момента времени t 2 будет таким же, каким оно было бы, начиная с момента t 1.

Общефизический закон сохранения энергии не может быть выведен из уравнений механики, и должен рассматриваться как одно из наиболее широких обобщений опытных фактов.

ЛЕКЦИЯ №6. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Пусть О – какая-либо неподвижная точка в инерциальной системе отсчета. Ее называют началом или полюсом. Обозначим через радиус-вектор, проведенный из этой точки к точке приложения силы (рис. 1).

Моментом силы относительно точки О называется векторное произведение радиуса-вектора на силу : , , (1)

угол между векторами и ;направление выбирается так, чтобы последовательность векторов , , образовывала правовинтовую систему, т. е. если смотреть вдоль вектора , то поворот по кратчайшему пути от первого сомножителя в (1) ко второму осуществлялся по часовой стрелке, таким образом совпадает с направлением поступательного движения правого буравчика, рукоятка которого вращается от к по наикратчайшему пути.

Моментом нескольких сил относительно точки называется векторная сумма моментов этих сил относительно той же точки

. (2)

Отметим частный случай двух равных параллельных сил и , направленных в противоположные стороны.

Такие силы образуют так называемую пару сил. В этом случае

,

т. е. момент пары сил равен моменту одной из этих сил относительно точки приложения другой.

Очевидно, что момент пары сил не зависит от выбора точки О. В частности, если равные и противоположно направленные силы и действуют вдоль одной и той же прямой, то они коллинеарны с вектором , и поэтому момент пары таких сил равен нулю.

Моментом импульса материальной точки относительно точки О называется векторное произведение радиуса-вектора на импульс :

. (3)

Для системы n материальных точек моментом импульса относительно некоторой точки О называется векторная сумма моментов импульсов этих точек относительно того же начала:

. (4)




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 729; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.