Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обобщение закона электромагнитной индукции

Введём взаимосвязь между основными характеристиками ЭСП (основной силовой характеристики напряженностью и основной силовой характеристики потенциалом). Для этого воспользуемся фундаментальным физическим законом (законом магнитной индукции).

Из опыта известно, что в некотором замкнутом поводящем контуре охваченным поверхностью S будет возникать электрический ток (индукционный) в то случае если поток магнитной индукции через данную поверхность будет меняться с течением времени.

 

Данный закон получен из электромагнитной индукции.

 

ЭДС индукции возникающее в данном контуре

- изменение потока магнитной индукции через поверхность S. - изменение промежутка времени в течение которого данное изменение произошло. Знак минус говорит о правиле Ленца согласно которому которое говорит что индукционный ток должен иметь такое направление, что создаваемое им магнитное поле должно препятствовать изменению того магнитного потока которое создаёт данный индукционный ток. Получим уравнение обобщающее данный физический закон. Это уравнение было выведено максвеллом и вошло в систему уравнений максвелла обобщающих основной закон электричества и магнетизма. Параллельно получим закон Ома в дифференциальной форме, то есть для некоторого элементарного отрезка по которому протекает ток. Согласно закону Ома для замкнутой цепи ЭДС индукции равно:

где: I – индукционный ток протекающий в данной поверхности замкнутого контура. R – сопротивление. dR – сопротивление элементарного участка данной цепи длинной dL.

Данный элементарный участок замкнутого контура длинной dL имеет площадь поперечного сечения ∆S, то

- удельная проводимость данного проводника.

Предполагаем что к некоторому проводнику длинной L и имеющему сопротивление R приложено напряжение U. То есть разность потенциалов проводника равная U. Сопротивление R данного проводника может быть определено:

где: j – плотность тока, то есть ток проходящий через единицу поверхности поперечного сечения проводника, в том случае если проводник короткий, то можно считать что напряжённость электрического поля под действием которой происходит движение электрических зарядов связано с напряжением U.

С учётом выше изложенного

Таким образом мы получили закон Ома в дифференциальной форме. Или уравнение среды. Используя выше представленные выкладки получили обобщающее уравнение электромагнитной индукции.

ЭДС индукции которая возникла в замкнутом контуре мы можем трактовать как циркуляцию вектора напряжённости электрического поля возникающего в результате изменения магнитного потока через поверхность которая охвачена замкнутым контуром по которому происходит выше названная циркуляция.

Циркуляция вектора напряжённости ЭП по замкнутому контуру L равна изменению во времени потока магнитной индукции через поверхность S которая охватывает данный замкнутый контур L взятую с обратным знаком. Из этого уравнения следует что изменяющийся во времени поток магнитной индукции порождает ЭП которое в общем случае отличается от ЭСП. Это поле наиболее легко обнаруживается если в качестве замкнутого контура охватывающего замкнутый контур S взять проводящий контур по которому будет протекать электрический ток вызывающий воздействие ЭП на свободные заряды находящиеся в проводнике. Данное уравнение является уравнением обобщающим закон электромагнитной индукции в интегральной форме. Для перехода к дифференциальной форме воспользуемся формулой Стокса.

С учётом формулы стокса.

Это выражение может выполняться только в случае когда

Данное выражение есть запись уравнения обобщающего закон электромагнитной индукции для некоторой точки пространства.

В случае ЭСП все производные по времени равны нулю, а неподвижными электрическими зарядами МП не создается. Тогда для ЭСП уравнение обобщающее закон электромагнитной индукции можно записать следующим образом.

Эта запись говорит о потенциальности, консервативности ЭСП, о том что работа сил кулоновского происхождения на замкнутом контуре равна нулю. Или что работа этих сил не зависит от формы траектории, а зависит лишь от начальной и конечной точки движения заряда. Таким образом исходя из обобщённого уравнения Максвелла нами получено свойство ЭСП, а именно его консервативность (потенциальность).

В общем случае работа по перемещению заряда Uиз точки а в точку б может быть определена как:

Исходя из потенциальности ЭСП можно получить взаимосвязь между напряжённостью ЭСП (основной силовой характеристикой ЭСП) и потенциалом ЭСП (основной энергетической характеристикой ЭСП). Ранее нами было введено понятие grad скалярной функции. Определим его физический смысл. Предполагаем, что дана скалярная функция φ. В некоторый момент данная функция определена и в пространстве данную функцию можно изобразить с помощью поверхности.

В следующий момент времени данная скалярная функция принимает другое значение и соответственно так же данная скалярная функция может быть изображена в виде новой поверхности причём можно утверждать, что за некоторый промежуток времени поверхность описанная уравнением сместилось в новое положение определяемое поверхностью . Вдоль нормали к этой поверхности. Величина равная получила название градиента скалярной функции φ. Таким образом градиент это вектор направленный в сторону наибольшего изменения некоторой скалярной функции.

Будем понимать под функцией φ потенциал ЭСП. Потенциал ЭСП можно определить как работу по перемещению положительного единичного пробного заряда выполненную силами ЭСП из данной точки (в которой определяется потенциал) на бесконечность.

Так как ЭСП потенциально то для него справедливо:

Из данного выражения следует:

Найдём однозначную взаимосвязь между напряжённостью и потенциалом. С учетом введённого определения потенциала можно записать:

где: - элементарное изменение потенциала; - элементарное перемещение.

Так как можно трактовать как элементарную работу консервативных сил по перемещению единичного пробного положительного заряда на величину dr, а работа консервативных сил связанная с потенциальной энергией тела находящегося в поле данных консервативных сил:

Таким образом исходя из этого можно определить:

Таки образом исходя из фундаментального физического закона электромагнитной индукции получили потенциальность ЭСП и нашли взаимосвязь между двумя характеристиками ЭСП (напряжённость и потенциал).

Потенциалом можно так же дать и иное определение. Потенциал равен, той потенциальной энергии которой обладает единичный пробный положительный заряд в точке определения потенциала, находящегося в поле кулоновских сил (сил электростатического происхождения). Отсюда выражения для определения потенциальной энергии заряда q находящегося в поле кулоновских сил может быть определено:

- величина заряда; - потенциал ЭСП в точке где находится заряд q.

 

<== предыдущая лекция | следующая лекция ==>
Уравнение обобщающее закон кулона теорема Гаусса | ЭСП в проводниках и диэлектриках
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 3475; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.