КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод хорд
Метод деления отрезка пополам
Все вышеизложенные методы могут работать, если функция f (x) из (1) является непрерывной и дифференцируемой вблизи искомого корня, в противном случае решение не гарантируется. Данный метод может быть использован даже для разрывных функций. Его алгоритм реализовывается согласно следующей рекуррентной последовательности: для x *Î [a,b]; x 0 = a; x 1 = b, находится x 2 = (a+b)/2. Очередная точка x 3 выбирается как середина того из смежных с x 2 интервалов [ x 0, x 2] или [ x 2, x 1], на котором находится корень. В результате получается следующий алгоритм метода деления отрезка пополам: 1) вычисляем y 0 = f (x 0); 2) вычисляем ; 3) если , тогда x 0 = x 2, иначе x 1 = x 2; (13) 4) если , тогда повторять с п. 1; 5) вычисляем . За одно вычисление функции погрешность уменьшается вдвое, т.е. скорость сходимости невелика, однако метод устойчив к ошибкам округления и всегда сходится. Немного подкорректировав алгоритм (13), его более наглядно можно представить в виде блок-схемы:
Пусть корень С уравнения f (x)=0 отделен на [ a, b ]. Функция f (x) непрерывна на отрезке и на его концах имеет разные знаки. Точки А и В имеют координаты соответственно (a, f (a)) и (b, f (b)) Искомым корнем С будет пресечение f (x) с осью ОХ. В начале итераций вместо С ищется приближение x 1, как результат пересечения ОХ с хордой АВ. Уравнение прямой АВ запишем в виде . Полагая у = 0, находим . Это можно записать в виде: или (14) Если x 1 оказывается недостаточно точным, находят второе приближение: . (15) На основании (14) и (15) можно записать рекуррентную последовательность: , (16) если, и (17) если. Заметим, что на выделенном интервале [ a, b ] имеют место четыре типа расположения кривой f (x).
Для I-го f ' (x) > 0, f " (x) > 0, для II-го f ' (x) < 0, f " (x) < 0, для III-го f ' (x) > 0, f " (x) < 0; для IV-го f ' (x) < 0, f " (x) > 0. Тогда для I-го и для II-го используется (16), т.е. х 0 = а. Для III-го и IV-го используется (17), т.е. х 0 = b. В заключение заметим, что во всех методах для определения функции f (x) и ее производных целесообразно использовать схему Горнера.
Дата добавления: 2013-12-11; Просмотров: 572; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |