Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Однородные координаты и матрицы преобразований

Свойства матриц поворота

1. Каждый столбец матрицы поворота представляет собой единичный вектор в направлении соответствующей оси повёрнутой системы отсчёта, заданной своими координатами относительно абсолютной системы координат.

Каждая строка матрицы поворота представляет собой единичный вектор в направлении соответствующей оси абсолютной системы координат, заданной своими координатами относительно повёрнутой системы отсчёта OUVW.

2.Поскольку каждый столбец и строка представляет собой координаты единичного вектора, длина векторов, определяемых строками и столбцами матрицы поворота, равна 1. Детерминант матрицы поворота равен +1 для правосторонней системы отсчёта и -1 – для левосторонней.

3.Поскольку столбцы (строки) матрицы поворота являются векторами, составляющими ортонормированный базис, скалярное произведение векторов, определяемых двумя различными столбцами (строками), равно нулю.

4.Операция обращения матрицы поворота совпадают с операцией транспонирования: R -1 = R T и RR T = I 3, где I 3 – единичная матрица размерностью 3´3.

Свойства 3 и 4 особенно полезны для проверки результатов умножения двух матриц поворота и при поиске строки или столбца матрицы поворота, в котором сделана ошибка.

Поскольку трёхмерная матрица поворота не несёт информации о поступательном перемещении и используемом масштабе, вектор координат р = (р x, рy, рz) T в трёхмерном пространстве дополняют четвёртой координатой (или компонентой) так, что он принимает вид: = (x, wрy, wрz, w) T. Тогда вектор выражен в однородных координатах.

Описание точек трёхмерного пространства однородными координатами позволяет ввести в рассмотрение матричные преобразования, содержащие одновременно поворот, параллельный перенос, изменение масштаба и преобразование перспективы.

В общем случае изображение N -мерного вектора размерностью N+1 называется представлением в однородных координатах. При таком представлении преобразование N -мерного вектора производится в (N+1)-мерном пространстве, а физический N -мерный вектор получается делением однородных координат на (N+1)-ю компоненту .

Так, вектор р = (рx, рy, рz) T положения в трёхмерном пространстве в однородных координатах представляется расширенным вектором (x, wрy, wрz, w) T.

Физические координаты связанны с однородными следующим образом:

рx = , рy= , рz= ,

где w – четвёртая компонента вектора однородных координат (масштабирующий множитель).

Если w = 1, то однородные координаты вектора положения совпадают с его физическими координатами.

Однородная матрица преобразования представляет собой матрицу размерностью 4´4, которая преобразует вектор, выраженный в однородных координатах, из одной системы отсчёта в другую.

Однородная матрица преобразования может быть разбита на четыре подматрицы:

Т = =. (4-1)

Верхняя левая подматриа размерностью 3×3 представляет собой матрицу поворота; верхняя правая подматрица размерностью 3×1 представляет собой вектор положения начала координат повернутой системы отсчета относительно абсолютной; Нижняя левая подматрица размерностью 1×3 задает преобразование перспективы; четвертый диагональный элемент является глобальным масштабирующим множителем. Однородная матрица преобразования позволяет выявить геометрическую связь между связанной системой отсчёта OUVW и абсолютной системой OXYZ.

Если вектор р трехмерного пространства выражен в однородных координатах, т.е. , то, используя понятие матрицы преобразования можно сформировать однородную матрицу преобразования Тпов, задающую преобразование поворота и имеющую размерность 4×4. Однородная матрица поворота получается соответствующим расширением обычной матрицы поворота, имеющей размерность 3×3. Так, однородное представление для матриц (2-12) и (2-13) имеет следующий вид:

, ,

. (4-2)

Эти матрицы размерностью 4×4 называются однородными матрицами элементарных поворотов. Однородная матрица преобразования переводит вектор, заданый однородными координатами в системе отсчета OUVW, в абсолютную систему координат OXYZ, т.е. при :

(4-3)

и .

<== предыдущая лекция | следующая лекция ==>
Геометрический смысл матриц поворота | Звенья, сочленения и их параметры
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 1397; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.