КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
При кручении деформации сдвига и касательные напряжения прямо пропорциональны расстоянию от центра тяжести сечения
Рис. 13.6. Рис. 13.4. Рис. 13.5. Рис. 13.3. Для определения крутящих моментов МК, возникающих в сечениях вала под действием внешних скручивающих моментов или поперечной нагрузки, будем применять метод сечений. Сделаем мысленный разрез стержня (рис. 13.3), например по а – а, отбросим одну часть стержня, в данном случае левую, и рассмотрим равновесие оставшейся правой части. Взаимодействие частей стержня заменим крутящим моментом МК, уравновешивающим внешний момент М. Для равновесия отсеченной части необходимо, чтобы алгебраическая сумма всех моментов, действующих на нее, была равна нулю. Отсюда в рассматриваемом случае М = МК. Если на отсеченную часть будет действовать несколько внешних моментов, то, проведя аналогичные рассуждения, можно убедиться, что крутящий момент в сечении численно равен алгебраической сумме внешних скручивающих моментов, действующих по одну сторону от сечения. Для наглядного представления о характере распределения и значении крутящих моментов по длине стержня строят эпюры (графики) этих моментов. Построение их вполне аналогично построению эпюр продольных сил при растяжении или сжатии. Для построения эпюр необходимо условиться о правиле знаков. Общепринятого правила знаков для крутящих моментов не существует. Может быть принято любое правило знаков. Важно лишь принятое правило выдержать на всем протяжении эпюры. Определение напряжений в стержнях круглого сечения
Крутящие моменты, о которых шла речь выше, представляют лишь равнодействующие внутренних сил. Фактически в поперечном сечении скручиваемого стержня действуют непрерывно распределенные внутренние касательные напряжения, к определению которых теперь и перейдем. Ознакомимся прежде всего с результатами опытов. Если на поверхности стержня круглого сечения нанести прямоугольную сетку, то после деформации окажется (рис. 13.4): 1) прямоугольная сетка превратится в сетку, состоящую из параллелограммов, что свидетельствует о наличии касательных напряжений в поперечных сечениях бруса, а по закону парности касательных напряжений – и в продольных его сечениях; 2) расстояния между окружностями, например между I и II, не изменятся. Не изменятся длина стержня и его диаметр. Естественно допустить, что каждое поперечное сечение поворачивается в своей плоскости на некоторый угол как жесткое целое (гипотеза плоских и жестких сечений). На основании этой гипотезы можно считать, что радиусы всех поперечных сечений будут поворачиваться (на разные углы), оставаясь прямолинейными.
На основании этого можно принять, что при кручении в поперечных сечениях стержня действуют только касательные напряжения, т. е. напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг. Формулы, полученные на основе этого допущения, подтверждаются опытами. Точка D переместится по дуге DD', точка С — по меньшей дуге С С' (рис. 13.5). На рис. 13.6 в более крупном масштабе изображена часть стержня между сечениями I и II и показана одна сторона KN элемента KLHN (см. рис. 13.4). В центре тяжести круглого сечения касательные напряжения равны нулю. Наибольшие касательные напряжения будут в точках сечения, расположенных у поверхности стержня. Формула для определения касательных напряжений при кручении имеет вид: , где Iр – полярный момент инерции сечения; r – произвольный радиус. Как видно из этой формулы, в точках, одинаково удаленных от центра сечения, напряжения t одинаковы. Наибольшие напряжения в точках у контура сечения: , где .
Дата добавления: 2013-12-12; Просмотров: 501; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |