КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свободные затухающие колебания
При наличии силы трения (r ≠0) и отсутствии внешней периодической силы (F0 = 0) уравнение движения имеет вид: (8), где β называется коэффициентом затухания колебаний. В случае слабого затухания (β – мало) решением такого дифференциального уравнения является функция: (9). В этом можно убедиться прямой подстановкой (9) в уравнение (8). – частота колебаний системы с затуханием. A=A0·e-βt – амплитуда затухающих колебаний. Таким образом, амплитуда колебаний убывает по экспоненциальному закону. Вместе с амплитудой убывает также и энергия колебаний W, т.к. W~A2. Степень убывания амплитуды определяется коэффициентом затухания β. Время τ=1/β, за которое амплитуда колебаний уменьшается в е=2.7183 раз, называют постоянной времени затухания колебаний. Скорость уменьшения амплитуды за период характеризует величина θ, называемая логарифмическим декрементом затухания. По определению: (10). Скорость убывания энергии в системе с затуханием характеризует добротность Q: (11), где W – энергия, запасенная в системе, (– ΔW)– энергия, теряемая системой за период. Добротность показывает, во сколько раз энергия, запасенная в системе, больше энергии, теряемой за период. Добротность в (11) выражена через параметры системы и логарифмический декремент затухания θ, с учетом того, что W~A2. В случае сильного затухания () колебательный процесс не развивается: система, выведенная из состояния равновесия и предоставленная самой себе, просто медленно возвращается к нему. Это т.н. апериодический процесс.
Дата добавления: 2013-12-12; Просмотров: 319; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |