КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Однородные уравнения
Уравнения с разделяющимися переменными Уравнения вида y’ = f(x). Дифференциальные уравнения первого порядка.
Определение. Дифференциальным уравнением первого порядка называется соотношение, связывающее функцию, ее первую производную и независимую переменную, т.е. соотношение вида:
Если такое соотношение преобразовать к виду то это дифференциальное уравнение первого порядка будет называться уравнением, разрешенным относительно производной.
Преобразуем такое выражение далее: Функцию f(x,y) представим в виде: тогда при подстановке в полученное выше уравнение имеем:
- это так называемая дифференциальная форма уравнения первого порядка.
Пусть функция f(x) – определена и непрерывна на некотором интервале a<x<b. В таком случае все решения данного дифференциального уравнения находятся как . Если заданы начальные условия х0 и у0, то можно определить постоянную С.
Определение. Дифференциальное уравнение называется уравнением с разделяющимися переменными, если его можно записать в виде .
Такое уравнение можно представить также в виде: Перейдем к новым обозначениям
Получаем:
После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными. Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.
Пример. Найти общее решение дифференциального уравнения:
Интеграл, стоящий в левой части, берется по частям:
- это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция y не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.
Чтобы проверить правильность полученного ответа продифференцируем его по переменной х. - верно
Пример. Найти решение дифференциального уравнения при условии у(2) = 1.
при у(2) = 1 получаем Итого: или - частное решение;
Проверка: , итого
- верно. Пример. Решить уравнение - общий интеграл - общее решение
Пример. Решить уравнение
Пример. Решить уравнение при условии у(1) = 0. Интеграл, стоящий в левой части будем брать по частям.
Если у(1) = 0, то
Итого, частный интеграл: .
Пример. Решить уравнение .
Для нахождения интеграла, стоящего в левой части уравнения см. Таблица интегралов. Получаем общий интеграл:
Пример. Решить уравнение Преобразуем заданное уравнение: Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.
Пример. Решить уравнение .
; ; Допустим, заданы некоторые начальные условия х0 и у0. Тогда:
Получаем частное решение
Определение. Функция f(x, y) называется однородной n-го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество: Пример. Является ли однородной функция
Таким образом, функция f(x, y) является однородной 3- го порядка.
Определение. Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.
Любое уравнение вида является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.
Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.
Рассмотрим однородное уравнение Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать: Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем: Правая часть полученного равенства зависит фактически только от одного аргумента , т.е. Исходное дифференциальное уравнение таким образом можно записать в виде: Далее заменяем y = ux, . таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.
Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.
Пример. Решить уравнение . Введем вспомогательную функцию u. . Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее . Подставляем в исходное уравнение:
Разделяем переменные:
Интегрируя, получаем:
Переходя от вспомогательной функции обратно к функции у, получаем общее решение:
Дата добавления: 2013-12-13; Просмотров: 584; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |