КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Постоянные запоминающие устройства (ПЗУ)
Основные классификационные параметры ЗУ
Статические параметры 3У
Важное преимущество ПЗУ по сравнению с ОЗУ - сохранение информации при выключении питания. Стоимость бита хранимой в ПЗУ информации может быть почти на порядок ниже, чем в ОЗУ. Постоянные ЗУ могут быть реализованы на основе различных физических принципов. В настоящее время применяются следующие виды ПЗУ: МАСОЧНЫЕ ПЗУ программируются их изготовителем, который по подготовленной пользователем информации делает фото-шаблоны, с помощью которых заносит эту информацию в процессе производства на кристалл ПЗУ. Этот способ самый дешевый и предназначен для крупносерийного производства ПЗУ. +U
A0
A1
A2
A3 D0 D1 D2 D4
Масочные ПЗУ строятся на основе диодов, биполярных и МДП-транзисторов. В диодных ПЗУ диоды включены в тех пересечениях матрицы, которые соответствуют записи «1», и отсутствуют в местах, где должен быть записан «0». Внешние цепи управления диодных ПЗУ очень просты. Так как диодная матрица представляет собой элемент с гальваническими связями, то выходные сигналы имеют ту же форму, что и входные. Постоянные ЗУ на МДП-транзисторах несколько проще в изготовлении, чем биполярные. Масочные ПЗУ характеризуются большой надежностью, но невозможно изменить информацию в ПЗУ без изготовления новой ИС, что особенно неудобно на этапе отработки программ системы.
ПРОГРАММИРУЕМЫЕ ПОЛЬЗОВАТЕЛЕМ ПЗУ являются более универсальными и, следовательно, более дорогими приборами. Они представляют собой матрицы биполярных приборов с плавкими перемычками (их упрощенная схема приведена на рис. 17.7), связи которых с адресными и разрядными шинами разрушаются при занесении кода на специальных ПРОГРАММАТОРАХ. Эти устройства вырабатывают напряжения, необходимые и достаточные для пережигания плавких перемычек в выбранных запоминающих элементах ПЗУ На рис.. плавкие перемычки ПП показаны в виде предохранителей, включенных в эмиттеры многоэмиттерных транзисторов VТo...VТп. Программируемые элементы включены между эмиттерами транзисторов матриц и разрядными шинами. Наличие перемычки соответствует логическому 0 на выходе усилителя считывания, а отсутствие перемычки — логической единице. Процесс записи информации в схему представляет собой избирательное разрушение плавких перемычек током, обеспечиваемым устройством программирования ОДНОКРАТНО ПРОГРАММИРУЕМЫЕ ПЗУ (ППЗУ) накопитель выполняют на базе ячеек. Постоянные ЗУ данного типа допускают только однократную запись информации в ячейку. При программировании'эти плавкие перемычки из нихрома или другого тугоплавкого материала пережигают с помощью специального программирующего устройства.. Пережигание перемычек в режиме программирования выполняется серией импульсов по специальной программе. Для повышения надежности работы ПЗУ методика программирования предусматривает подачу серии 40,.. 100 импульсов после фиксации момента пережигания перемычки, а также обязательную термотренировку запрограммированного ПЗУ при температуре (около 100°С). A0 PROM à A1 A2 A3 D0 A4 D1 A5 D2 A6 D3 A7 CS +U V GND
Более надежными являются микросхемы с перемычками из поликристаллического кремния, в которых процесс необратимого перехода поликремния из проводящего состояния в непроводящее происходит под действием нагрева, вызванного протеканием тока. Схемы поддержки режима программирования обычно располагаются на самом кристалле микросхемы, и процесс программирования.протекает следующим образом. 1) На адресные входы подается адрес выбранной ячейки. 2) Напряжение питания микросхемы +U повышается до напряжения программирования +10 V необходимого для создания тока, I ³ 400 mA достаточного для плавления перемычки. 3) На вход программирования V через резистор подется напряжение +15 V с током не более 100 mA 4) Далее на выходах микросхемы путем задания тока через резисторы 300 Ом указываются те разряды слова, в которых будут выплавляться перемычки. Амплитуда прожигающих импульсов + 10 V.
ПЕРЕПРОГРАММИРУЕМЫЕ ПЗУ (РПЗУ) Наибольшее распространение среди них получили ПЗУ с ультрафиолетовым стиранием и с электрическим стиранием и записью информации. Микросхемы, в которых информация стирается с помощью ультрафиолетового излучения (УФППЗУ), имеют: возможность многократного программирования, достаточно малое время выборки и энергопотребление, большую емкость. Запоминающим элементом в ПЗУ с УФ-стиранием является МОП-транзистор. Информация о содержимом данной ячейки хранится в виде заряда на втором затворе МОП-транзистора. При необходимости в перепрограммировании микросхемы предварительно записанную информацию стирают ультрафиолетовым светом c l £ 400 мкм (источником может являться лампа ДРТ220 или ДРТ375) через прозрачное кварцевое окошко на поверхности корпуса микросхемы. УФ-излучение разряжает плавающий затвор МОП-транзистора. Время сохранения информации в микросхемах ПЗУ данного типа определяется качеством призатворного диэлектрика и для современных микросхем составляет десять лет и более.
A0 RPROM A1 D0 A2 D1 A3 D2 A4 D3 A5 D4 A6 D5 A7 D6 A8 D7 A9
WR +U +Uп CS GND
Микросхемы ПЗУ с электрическим стиранием информации популярны у разработчиков микропроцессорной техники благодаря возможности быстрого стирания и записи, большим допустимым числом циклов перезаписи информации.(10000 раз и более). Однако они достаточно дорогие и сложные по сравнению с микросхемами ПЗУ с УФ-стиранием и поэтому уступают последним по степени использования в микропроцессорной аппаратуре. Основу запоминающей ячейки в ПЗУ с электрическим стиранием составляет МОП-транзистор с плавающим затвором, такой же, как и в ПЗУ с УФ-стиранием. Но в микросхемах данного типа технологическими методами обеспечена возможность обратного туннелирования, т.е. отбора электронов с плавающего затвора, что позволяет выборочно стирать занесенную информацию.
СЕГНЕТОЭЛЕКТРИЧЕСТВО, электрический аналог ферромагнетизма. Подобно тому как в ферромагнитных веществах при помещении их в магнитное поле проявляется остаточная магнитная поляризация (момент), в сегнетоэлектрических диэлектриках, помещенных в электрическое поле, возникает остаточная электрическая поляризация. Микроскопической причиной сегнетоэлектричества является наличие внутри вещества атомных (или молекулярных) диполей. Эти диполи ориентируются внешним электрическим полем и остаются ориентированными после снятия поля; переключение направления поля на противоположное приводит к обратной ориентации диполей. Принципиальное отличие сегнетоэлектричества от ферромагнетизма состоит в том, что свободные электрические заряды могут экранировать электрические поля, создаваемые электрическими диполями, а это затрудняет прямое наблюдение статической поляризации. Поляризацию обычно измеряют по так называемой петле гистерезиса. Образец помещают между пластинами конденсатора, на которые подается переменное напряжение E. На экране осциллографа регистрируется кривая зависимости заряда, возникающего на пластинах, а тем самым и электрической поляризации (поскольку заряд, отнесенный к единице площади поверхности пластин, является мерой вектора электрической поляризации P), от напряжения (поля) E. Петля гистерезиса, представленная на рис. 1, характеризуется двумя величинами: остаточной поляризацией P (любого знака), имеющейся даже при нулевом поле E, и коэрцитивным полем Ec, при котором вектор поляризации изменяет направление на обратное. Площадь петли гистерезиса равна работе электрических сил, затрачиваемой в пределах одного цикла перехода сегнетоэлектрика между двумя эквивалентными состояниями поляризации противоположного знака. На данный момент имеется огромное количество всевозможнейших комбинаций основных элементов, из которых строится ячейка памяти – ферромагнитного сегнетоэлектрического транзистора и такого же конденсатора. Но при рассмотрении этих комбинаций можно выявить 4 основных типа, которые являются базовыми, все остальные типы ячеек FeRAM являются лишь их комбинациями. Это однотранзисторная ячейка 1Т FeRAM, одноконденсаторная ячейка 1С FeRAM, называемая еще SFRAM (statically read, non-volatile, ferroelectric random access memory - полный аналог SRAM), наиболее распространенная транзисторно-конденсаторная ячейка 1Т-1С FeRAM и наиболее стабильная из всех вышеперечисленных двойная ячейка 2T-2C FeRAM. А теперь подробнее. Помимо этих основных структур существует огромное количество их комбинаций. Практически любой мало-мальски уважающий себя университет занимается сейчас перебором вариантов компоновки ячеек и изучением свойств этих гибридов. Защищаются дипломы на данную тему, получаются все новые и новые патенты. Рассмотреть хотя бы наиболее перспективные комбинации в рамках одной статьи - дело нереальное. Тут материала как минимум еще на одну статью, ну а пока стоит перейти к дальнейшим перспективам FeRAM.
1Т FeRAM Эта структура ячейки использовалась в одной из первых работающих моделей FeRAM, но показатели ее были не на высоте - ячейка слишком быстро теряла заряд и переходила в непредсказуемое состояние, то есть не являлась энергонезависимой, поэтому работы в области 1T были свернуты. Но сама идея оказалась живуча - ведь имея в качестве ячейки всего один транзистор можно добиться минимального ее размера и, соответственно, гигантской информационной емкости приходящейся на единицу поверхности чипа. Именно поэтому в 2002 году работы над созданием 1Т FeRAM были продолжены двумя крупнейшими японскими институтами - NERI (Nanoelectronics Research Institute) и AIST (National Institute of Advanced Industrial Science and Technology). Используя ферромагнитные сегнетоэлектрики новейшего поколения - композиционный оксид SBT (SrBi2Ta2O9) с добавлением гафния Hf и несколько модифицировав структуру полевого сегнетоэлектрического транзистора (ferroelectric gate field-effect transistor) им удалось получить 1Т структуру со значительно более долгим временем хранения заряда, на порядок больше предыдущих разработок. Сама схема 1Т FeRAM выглядит следующим образом:
Слева приведена схема традиционной 1T-1C ячейки, справа только 1Т. Даже из принципиальной схемы явствует, что ячейка 1Т меньше и проще в исполнении по сравнению с 1T-1C, что должно положительно сказаться на себестоимости и на информационной емкости памяти на ее основе. Сам транзистор выглядит так:
Запись в ячейку 1T FeRAM осуществляется при подаче положительного или отрицательного заряда на электроды схемы. Когда на электрод стока (drain electrode) подается напряжение +6V в канале проводника возникает пульсирующий адекватный ток соответствующий значению "1". И наоборот - после подачи отрицательного напряжения - пульсирующий ток крайне незначителен - ячейка переходит в положение "0". На графике это выглядит следующим образом:
Как следует из этого графика разница между состоянием "0" и состоянием "1" достаточна для однозначного определения значения ячейки, а падение тока утечки незначительно - за 106 секунд (что соответствует 11,6 суткам) падение не превысило 2%. Подводя итог, можно сказать, что данная технология вполне жизнеспособна - чрезвычайно малый размер ячеек, стабильность заряда и высокая скорость доступа к ячейкам (что может быть проще транзистора?) - вот ключевые позиции 1T FeRAM. Основной проблемой является надежность хранения заряда - память на базе 1T FeRAM теряет данные по прошествии 50-60 дней. Впрочем, для рынка мобильных компьютеров это не актуально - вряд ли у кого из владельцев КПК его любимая игрушка будет выключена более двух месяцев, а при включении заряд на транзисторах обновляется. Следовательно, создателям 1T осталось повысить надежность и, главное, реализовать все это на практике - а это похоже будет главной проблемой, ни один из крупных производителей FeRAM пока не заинтересовался этой новой реинкарнацией старой идеи, предпочитая заниматься более традиционными 1T-1C и 2Т-2C. На текущий момент не было ни одной новости о лицензировании технологии 1Т каким-нибудь крупным производителем. По-видимому, стереотипы живучи - один раз забраковав 1Т структуру, гиганты компьютерной индустрии накрепко про нее забыли. Хочется верить, что этой, как ее назвали разработчики, ultra-Gbit FeRAM, повезет с издателями, и увидим мы на прилавках дешевые емкие энергонезависимые носители информации.
FM24CL16 Энергонезависимое сегнетоэлектрическое ОЗУ (FRAM) емкостью 16 кбит с последовательным интерфейсом и питанием 3В Отличительные особенности: Сегнетоэлектрическое энергонезависимое ОЗУ емкостью 16 кбит Быстродействующий двухпроводной последовательный интерфейс Малая потребляемая мощность Соответствие промышленным стандартам Структурная схема FM24CL16: Расположение выводов FM24CL16: Общее описание: FM24CL16 – энергонезависимая память емкостью 16 кбит, выполненная по сегнетоэлектрической технологии. Сегнетоэлектрическое оперативное запоминающее устройство или FRAM является энергонезависимым и выполняет операции чтения и записи подобно ОЗУ. Оно обеспечивает надежное хранение информации в течение 10 лет, при устранении проблем связанных со сложностью, ограниченным быстродействием записи и уровнем системной надежности ЭППЗУ и другой энергонезависимой памяти. В отличие от ЭППЗУ FM24CL16 выполняет операцию записи на скорости шины. При этом не возникает никаких задержек при записи. Следующий цикл шины может быть начат немедленно без необходимости опроса данных. Кроме того, устройство обладает неограниченным количеством циклов записи, что на много порядков больше, чем у ЭППЗУ. Также FRAM потребляет гораздо меньший ток при записи, чем ЭППЗУ, которому требуется дополнительный внутренний источник питания схемы программирования. Данные возможности делают FM24CL16 идеальным для приложений с энергонезависимым хранением информации, где требуется частая и быстрая запись данных. Примеры таких приложений простираются от накопителей данных, где время записи может быть критичным параметром, до промышленного управления, где задержки при записи в ЭППЗУ могут привести к потери информации. В совокупности данные преимущества позволяют записывать данные с большей частотой, не вызывая при этом неудобства в программировании. FM24CL16 выпускается в стандартном промышленном 8-выв. корпусе SOIC и использует двухпроводной протокол связи. Выполнение технических характеристик гарантируется во всем промышленном температурном диапазоне -40°C … +85°C. FM24CL16 требует для питания 3В и обеспечивает быстродействие шины до 1 МГц, при этом функционально совместим с 5В версией FM24C16. Описание выводов:
Информация для заказа:
Тонкие пленки из цирконата-титаната свинца и лантана (PLZT) активно изучаются с целью создания энергозависимых микроэлектронных ЗУ с применением кремниевой технологии. (Бистабильная поляризация – идеальная основа для двоичных ячеек памяти.) В результате перехода технологий производства полупроводниковых изделий на процесс менее 1 мкм возникла необходимость соответствующего уменьшения напряжения питания. В настоящее время на рынке усиливается тенденция перехода от 5-вольтовых систем к 3-вольтовым. Однако, не вся компонентная база удовлетворяет данной тенденции и проектировщики систем сталкиваются со сложностью применения компонентов при использовании одного источника питания. Эта проблема даже больше касается компаний занимающихся техническим обслуживанием систем, которые экономят средства за счет перепроектирования морально устаревших 5-вольтовых частей. Корпорация Atmel учитывала это при проектировании новой серии AT45DBXXXX семейства DataFlash с питанием только 3В. Однако, семейство 3-вольтовых DataFlash могут использоваться и в 5-вольтовых системах. Данное практическое руководство имеет целью привести рекомендации по использованию 3-вольтовых DataFlash в 5-вольтовых системах или в системах со смешанным питанием.
ШЕСТНАДЦАТЕРИЧНЫЕ ЧИСЛА Ячейка памяти типичной микро-ЭВМ может содержать двоичное число 1001 1110. Такая длинная цепь нулей и единиц сложна для запоминания и неудобна для ввода с клавиатуры. Число 1001 1110 могло бы быть преобразовано в десятичное, что дало бы 15810, но процесс преобразований занял бы много времени. Большая часть систем микроинформатики использует шестнадцатеричную форму записи, чтобы упростить запоминание и использование таких двоичных чисел, как 1001 1110. Шестнадцатеричная система счисления (hexadecimal) или система с основанием 16, использует 16 символов от О до 9 и А, В, С, D, Е, F. В табл. 2.5 приведены эквиваленты десятичных, двоичных и шестнадцатеричных чисел. Заметим из табл. 1, что каждый шестнадцатеричный символ может быть представлен единственным сочетанием четырех бит. Таким образом, представлением двоичного числа 1001 1110 в шестнадцатеричном коде является число 9Е. Это значит, что часть 1001 двоичного числа равна 9, а часть 1110 равна Е (конечно, в шестнадцатеричном коде). Следовательно, 1001 11102 = 9E16. (Не следует забывать, что индексы означают основание системы счисления.) Как преобразовать двоичное число 111010 в шестнадцатеричное? Надо начать с МБ и разделить двоичное число на группы из 4 бит. Затем надо заменить каждую группу из 4 бит эквивалентной шестнадцатеричной цифрой: 10102=А, 00112=3, следовательно, 1110102=3A16. Как преобразовать шестнадцатеричное число 7F в двоичное? В этом случае каждая шестнадцатеричная цифра должна быть заменена своим двоичным эквивалентом из 4 бит. В примере двоичное число 0111 заменено
Таблица 1. Десятичные, шестнадцатеричные и двоичные эквиваленты
шестнадцатеричной цифрой 7, а 11112 заменяет F16, откуда 7F16 = 111101112. Шестнадцатеричная запись широко используется для представления двоичных чисел.
Таблица 2. Преобразование шестнадцатеричного числа в десятичное
Преобразуем шестнадцатеричное число 2C6E в десятичное. Процедура действий соответствует табл. 2. Значениями позиций первых четырех шестнадцатеричных цифр являются соответственно слева направо 4096, 256, 16 и 1. Десятичное число содержит 14 (E16) единиц, 6 чисел 16, 12 (С16) чисел 256 и 2 числа 4096. Каждая цифра умножается на соответствующий ей вес, получается сумма, которая и дает нам десятичное число 11374. Преобразуем десятичное число 15797 в шестнадцатеричное. На рис. 5 показана процедура действий. В первой строке 1579710 разделено на 16, что
1579710:16 = 987 остаток 510 = 516 МР 97810: 16 = 61 остаток 1110 = B16 6110:16 = 3 остаток 1310 = D16 310: 16 = 0 остаток 310=316 СР 1579710 = 3 D B 5
Рис. 5. Десятично-шестнадцатеричное преобразование
дает частное 98710 и остаток 510, который преобразуется затем в свой шестнадцатеричный эквивалент (510 = 516) и становится цифрой младшего разряда (МР) шестнадцатеричного числа. Первое частное (987) становится делимым во второй строке и снова делится на 16, что дает частное 61 и остаток 1110 или шестнадцатеричное В. В третьей строке 61 делится на 16, дает частное 3 и остаток 1310 или D16, а в четвертой строке делимое 3 делится на 16, дает частное 0 и остаток З10 или 316. Когда частное равно 0, как в четвертой строке, преобразование заканчивается. 316 становится цифрой старшего разряда (СР) результата, т.е. 3DB516.
Дата добавления: 2013-12-13; Просмотров: 1020; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |