КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сверхпроводимость
Прежде чем на основе квантовой теории приступить к качественному объяснению явления сверхпроводимости, рассмотрим некоторые свойства сверхпроводников. Различные опыты, поставленные с целью изучения свойств сверхпроводников, приводят к выводу, что при переходе металла в сверхпроводящее состояние не изменяется структура его кристаллической решетки, не изменяются его механические и оптические (в видимой и инфракрасной областях) свойства. Однако при таком переходе наряду со скачкообразным изменением электрических свойств качественно меняются его магнитные и тепловые свойства. Так, в отсутствие магнитного поля переход в сверхпроводящее состояние сопровождается скачкообразным изменением теплоемкости, а при переходе во внешнем магнитном поле скачком изменяются и теплопроводность, и теплоемкость (такие явления характерны для фазовых переходов II рода. Достаточно сильное магнитное поле (а следовательно, и сильный электрический ток, протекающий по сверхпроводнику) разрушает сверхпроводящее состояние. Как показал немецкий физик В. Мейсснер (1882—1974), в сверхпроводящем состоянии магнитное поле в толще сверхпроводника отсутствует. Это означает, что при охлаждении сверхпроводника ниже критической температуры магнитное поле из него вытесняется (эффект Мейсснера). Общность эффектов, наблюдаемых в сверхпроводящем состоянии различных металлов, их соединений и сплавов, указывает на то, что явление сверхпроводимости обусловлено физическими причинами, общими для различных веществ, т. е. должен существовать единый для всех сверхпроводников механизм этого явления. Физическая природа сверхпроводимости была понята лишь в 1957 г. на основе теории Ландау (создана в 1941 г.) сверхтекучести гелия (см. § 237). Теория сверхпроводимости создана американскими физиками Д. Бардином (р. 1908), Л. Купером (р. 1930) и Д. Шриффером (р. 1931) и усовершенствована Н. Н. Боголюбовым. Оказалось, что помимо внешнего сходства между сверхтекучестью (сверхтекучая жидкость протекает без трения, т. е. без сопротивления течению, по узким капиллярам) и сверхпроводимостью (ток в сверхпроводнике течет без сопротивления по проводу) существует глубокая физическая аналогия: и сверхтекучесть, и сверхпроводимость — это макроскопический квантовый эффект. Качественно явление сверхпроводимости можно объяснить так. Между электронами металла помимо кулоновского отталкивания, в достаточной степени ослабляемого экранирующим действием положительных ионов решетки, в результате электрон-фононного взаимодействия (взаимодействия электронов с колебаниями решетки) возникает слабое взаимное притяжение. Это взаимное притяжение при определенных условиях может преобладать над отталкиванием. В результате электроны проводимости, притягиваясь, образуют своеобразное связанное состояние, называемое куперовской парой. “Размеры” пары много больше (примерно на четыре порядка) среднего межатомного расстояния, т. е. между электронами, “связанными” в пару, находится много “обычных” электронов. Чтобы куперовскую пару разрушить (оторвать один из ее электронов), надо затратить некоторую энергию, которая пойдет на преодоление сил притяжения электронов пары. Такая энергия может быть в принципе получена в результате взаимодействия с фононами. Однако пары сопротивляются своему разрушению. Это объясняется тем, что существует не одна пара, а целый ансамбль взаимодействующих Друг с другом куперовских пар. Электроны, входящие в куперовскую пару, имеют противоположно направленные спины. Поэтому спин такой пары равен нулю и она представляет собой бозон. К бозонам принцип Паули неприменим, и число бозе-частиц, находящихся в одном состоянии, не ограничено. Поэтому при сверхнизких температурах бозоны скапливаются в основном состоянии, из которого их довольно трудно перевести в возбужденное. Система бозе-частиц — куперовских пар, обладая устойчивостью относительно возможного отрыва электрона, может под действием внешнего электрического поля двигаться без сопротивления проводнику, что и приводит к сверхпроводимости.
Дата добавления: 2013-12-13; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |