КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Другие частные случаи
Теорема 3. О предварительно заданной плоской кривовой в линии пересечения. Круговые сечения эллиптического конуса. Теорема 2. О двойном соприкосновении. Если две поверхности 2-ого порядка касаются друг друга в двух точках, то линия их пересечения распадается на две плоские кривые 2-ого порядка.
Задача 4_13- а. Лучше решить с построением. Но можно загрузить одноименный файл (лекция 11). Вынести линию. Диагностировать эллипсы.
Напомнить варианты плоских сечений. Один из них – пересечение эллиптического конуса по окружности. Построение вытекает из теоремы 2: нужно обеспечить касание эллиптического конуса и некоторой сферы. Согласно теореме они пересекутся по двум плоским кривым. Но плоские кривые на сфере – это окружности.
Построить элл. конус. Сечение как фронтальный очерк. Перпендикуляр с произвольной точки оси на образующую. Сфера радиусом, равным длине перпендикуляра. Пересечение Диагностировать окружности. Показать два семейства окружностей.
Если две поверхности 2-ого порядка по построению пересекаются по одной плоской кривой, то существует еще одна плоская кривая в линии их пересечения.
Задача 4_13-б. Загрузить одноименный файл (лекция 11). Диагностировать эллипс. Достроить эллипс до полного.
Теорема 4. Теорема Монжа. Если две поверхности 2-го порядка касаются третьей поверхности 2-ого порядка, то первые две поверхности пересекаются по двум плоским кривым 2-го порядка. Задача 4.11. Построить самому. Пример с пересечением двух трубопроводов. Разделить заготовки под сварку. Пример с вписанными эллипсоидами (лекция 11).
Для линейчатых поверхностей (цилиндр, конус, однополостный гиперболоид) возможны сочетания: 1+1+1+1; 1+1+2; 2+2; 1+3. Показать пересечение двух эллиптич. конусов с общей вершиной по 4-м прямым. Показать примеры из лекции 11.
Дата добавления: 2013-12-14; Просмотров: 589; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |