Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Повторные операции теории поля

1). Рассмотрим скалярное поле . В нем определен вектор .

В векторном поле определены понятия дивергенции и ротора

. (13.1)

2). Рассмотрим векторное поле . В нем определены скаляр и вектор . Для скалярного поля определено понятие градиента

. (13.2)

Для векторного поля определены понятия дивергенции и ротора

, . (13.3)

Выражения (13.1) ─ (13.3) определяют повторные операции теории поля. Их называют также дифференциальными операциями второго порядка.

Рассмотрим каждую из этих операций более подробно.

Выражениеесть оператор Лапласа ; он был введен в п. 12.3.

Так как поле является потенциальным, а в потенциальном поле ротор равен нулю, то .

Так как поле является соленоидальным, а в соленоидальном поле дивергенция равна нулю, то .

Выражения и используются в электродинамике и связаны соотношением (которое будет установлено позже)

. (13.4)

Здесь для вектора понимают как

Итак, имеем следующие соотношения

 

<== предыдущая лекция | следующая лекция ==>
Гармоническое векторное поле | ЛЕКЦИЯ 19. Понятие об устойчивости сооружений. Устойчивость центрально сжатого стержня в пределах пропорциональности. Формула Эйлера
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1274; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.