Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

J Пример 25.7

,

так как функция чётная. J

J Пример 25.8. , так как функция нечётная. J

 

25.6. Формула интегрирования по частям для определённого интеграла

 

♦ Теорема 25.9.

, (25.11)

где и – непрерывно дифференцируемые на отрезке функции.

Доказательство. Функция имеет на отрезке непрерывную производную . По формуле Ньютона-Лейбница

,

откуда следует формула (25.11). ■

 

J Пример 25.9. . J

 

25.7. Теорема о среднем для определённого интеграла

 

♦ Теорема 25.10. Для непрерывной на отрезке функции существует точка такая, что

. (25.12)

Доказательство. Так как непрерывна, то для неё существует первообразная и по формулам Ньютона-Лейбница и Лагранжа для получаем:

, ,

так как для . ■


[1] Риман Бернхард (1826–1866) – немецкий математик.

<== предыдущая лекция | следующая лекция ==>
Интеграл как функция верхнего предела | Лекция 25.02.13
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 493; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.