КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Разложения
Определение оригинала по изображению. Теорема Операторным методом Алгоритм анализа переходных процессов
Расчет переходного процесса операторным методом предусматривает следующий порядок операций: 1) вычерчивается исходная расчетная схема замещения цепи и определяются начальные условия коммутации; 2) все известные электрические величины и параметры изображаются в операторной форме (сложение функции – с помощью таблиц оригиналов и изображений) и осуществляется переход к операторной схеме замещения цепи; 3) на основе законов Ома, Кирхгофа в операторной форме в соответствии с выбранным методом расчета цепи после ее коммутации составляется система операторных уравнений с учетом начальных условий, которая решается относительно изображений искомых переходных токов и напряжений; 4) получение изображения искомых переходных токов и напряжений преобразуются либо к табличным, либо к виду, удобному для применения теоремы разложения, и определяются оригиналы (переходные токи и напряжения); 5) производится анализ характера переходного процесса.
При использовании операционного исчисления расчеты ведут в изображениях функций, что обеспечивает алгебраизацию задачи, а затем на заключительном этапе переходят к оригиналам (функциям времени). Наиболее распространенными являются следующие способы перехода к оригиналам: - с помощью таблиц оригиналов и изображений; - с помощью обратного преобразования Лапласа; - на основе теоремы разложения. Определение оригиналов по таблицам возможно тогда, когда удается свести изображение функции к табличному. В сложных случаях этого достичь не удается. Определение оригиналов с помощью обратного преобразования Лапласа (13.3) производится в наиболее сложных случаях, приводит к громоздким вычислениям и требует специальной подготовки. Определение оригиналов на основе теоремы разложения является наиболее универсальным способом и используется в тех случаях, когда полученное изображение функции не удается свести к табличному. Теорема разложения формулируется следующим образом. Если изображение искомой функции можно представить в виде рациональной дроби (14.14) Где многочлены F1(p) и F2(p) общих корней не имеют; ak и bk – действительные числа, то F(p) можно разложить на ряд слагаемых, каждому из которых соответствует табличный интеграл (14.15) где p1,p2,...,pn – корни характеристического уравнения F2(p) = 0; F1(p1),F1(p2),…,F1(pn) – значения многочлена числителя при соответствующих корнях p1,p2,…,pn характеристического уравнения; - значения производных многочлена знаменателя при соответствующих корнях p1,p2,…,pn характеристического уравнения. Алгоритм применения теоремы разложения. 1. Изображение искомой функции представить в виде рациональной дроби (14.14). 2. Составить характеристическое уравнение знаменателя и определить его корни p1,p2,…,pn. 3. Определить значения многочлена числителя при каждом из корней характеристического уравнения. 4. Определить в общем виде производную многочлена знаменателя и ее значения при каждом из корней характеристического уравнения. 5. По теореме разложения (14.15) записать оригинал (искомую функцию). Пример. Пусть задано изображение в виде . Необходимо найти его оригинал. Решение. Обозначим F1(p) = p +2; F2(p) = p(p2 + 5p +4). При этом получим F(p) в виде (14.14). Найдем корни характеристического уравнения F2(p) = p(p2 + 5p +4) = 0. p1 = 0; p2 = - 1; p3 = - 4. При этом F1(p1) = 2; F1(p2) = 1; F1(p3) = - 2. Определим производную Отсюда Воспользовавшись формулой (12.9), окончательно получим:
Дата добавления: 2014-01-04; Просмотров: 2037; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |