КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
МЕДИАННая ФИЛЬТРАЦИя сигналов
ВВЕДЕНИЕ Лекция 16. МЕДИАННЫЕ ФИЛЬТРЫ Медианные фильтры достаточно часто применяются на практике как средство предварительной обработки цифровых данных. Специфической особенностью фильтров является слабая реакция на отсчеты, резко выделяющиеся на фоне соседних. Это свойство позволяет применять медианную фильтрацию для устранения аномальных значений в массивах данных, уменьшения импульсных помех. Характерной особенностью медианного фильтра является его нелинейность. Во многих случаях применение медианного фильтра оказывается более эффективным по сравнению с линейными фильтрами, поскольку процедуры линейной обработки являются оптимальными при равномерном или гауссовом распределении помех, что в реальных сигналах может быть далеко не так. В случаях, когда перепады значений сигналов велики по сравнению с дисперсией аддитивного белого шума, медианный фильтр дает меньшее значение среднеквадратической ошибки по сравнению с оптимальными линейными фильтрами. Особенно эффективным медианный фильтр оказывается при очистке сигналов от импульсных шумов при обработке изображений, акустических сигналов, передаче кодовых сигналов и т.п. Однако детальные исследования свойств медианных фильтров как средства фильтрации сигналов различного типа являются довольно редкими. Принцип фильтрации. Медианный фильтр представляет собой оконный фильтр, последовательно скользящий по массиву сигнала, и возвращающий на каждом шаге один из элементов, попавших в окно (апертуру) фильтра. Выходной сигнал yk скользящего медианного фильтра шириной 2n+1 для текущего отсчета k формируется из входного временного ряда …, xk-1, xk, xk+1,… в соответствии с формулой: yk = Me(xk-n, xk-n+1,…, xk-1, xk, xk+1 ,…, xk+n-1, xk+n), (16.1.1) где Me(x1, …, xm, …, x2n+1) = xn+1, xm – элементы вариационного ряда, т.е. ранжированные в порядке возрастания значений xm: x1 = min(x1, x2,…, x2n+1) ≤ x(2) ≤ x(3) ≤ … ≤ x2n+1 = max(x1, x2,…, x2n+1). Одномерные фильтры. Медианная фильтрация реализуется в виде процедуры локальной обработки отсчетов в скользящем окне, которое включает определенное число отсчетов сигнала. Для каждого положения окна выделенные в нем отсчеты ранжируются по возрастанию или убыванию значений. Средний по своему положению отчет в ранжированном списке называется медианой рассматриваемой группы отсчетов. Этим отсчетом заменяется центральный отсчет в окне для обрабатываемого сигнала. Алгоритм медианной фильтрации обладает явно выраженной избирательностью к элементам массива с немонотонной составляющей последовательности чисел в пределах апертуры и наиболее эффективно исключает из сигналов одиночные выбросы, отрицательные и положительные, попадающие на края ранжированного списка. С учетом ранжирования в списке медианные фильтры хорошо подавляют шумы и помехи, протяженность которых составляет менее половины окна. Монотонные составляющие сигналов медианный фильтр оставляет без изменений.
Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре могут сохранять без искажений резкие границы объектов, подавляя некоррелированные и слабо коррелированные помехи и малоразмерные детали. При аналогичных условиях алгоритмы линейной фильтрации неизбежно «смазывает» резкие границы и контуры объектов. На рис. 16.1.1 приведен пример обработки сигнала с импульсными шумами медианным и треугольным фильтрами с одинаковыми размерами окна N=3. Преимущество медианного фильтра очевидно. Окно медианного фильтра, как правило, устанавливается нечетным. В общем случае окно может быть и четным, при этом медиана устанавливается, как среднее арифметическое двух средних отсчетов. В качестве начальных и конечных условий фильтрации обычно принимаются концевые значения сигналов, либо медиана находится только для тех точек, которые вписываются в пределы апертуры.
На рис. 16.1.2 приведен пример медианной фильтрации модельного сигнала ak, составленного из детерминированного сигнала sk в сумме со случайным сигналом qk, имеющим равномерное распределение с одиночными импульсными выбросами. Окно фильтра равно 5. Результат фильтрации – отсчеты bk. Двумерные фильтры. Основную информацию в изображениях несут контуры объектов. При фильтрации зашумленных изображений степень сглаживания контуров объектов напрямую зависит от размеров апертуры фильтра. При малых размерах апертуры лучше сохраняются контрастные детали изображения, но в меньшей степени подавляется импульсные шумы. При больших размерах апертуры наблюдается обратная картина. Это противоречие в некоторой степени сглаживается при применении фильтров с адаптацией размеров апертуры под характер изображения. В адаптивных фильтрах большие апертуры используются в монотонных областях обрабатываемого сигнала (лучшее подавление шумов), а малые – вблизи неоднородностей, сохраняя их.
Кроме размеров окна эффективность фильтра в зависимости от характера изображения и параметров статистики шумов существенно зависит от формы маски выборки отсчетов. Примеры формы масок с минимальной апертурой приведены на рис. 16.1.3. Оптимальный выбор формы сглаживающей апертуры зависит от специфики решаемой задачи и формы объектов. На рис. 16.1.4 приведен пример очистки зашумленного изображения медианным фильтром Черненко /2i/. Зашумление изображения по площади составляло 15%, для очистки фильтр применен последовательно 3 раза.
Достоинства медианных фильтров.
Недостатки медианных фильтров.
Недостатки метода можно уменьшить, если применять медианную фильтрацию с адаптивным изменением размера окна фильтра в зависимости от динамики сигнала и характера шумов (адаптивная медианная фильтрация). В качестве критерия размера окна можно использовать, например, величину отклонения значений соседних отсчетов относительно яркости центрального ранжированного отсчета /1i/. При уменьшении этой величины ниже определенного порога размер окна увеличивается.
Дата добавления: 2014-01-04; Просмотров: 4358; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |