КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Портфель с минимальным риском
Пусть целью инвестора является выбор портфеля с минимальным возможным риском, то есть необходимо так выбрать и , чтобы величина риска портфеля была бы наименьшей. Эту задачу можно просто решить аналитически. Прежде всего, заметим, что для портфеля из 2-х активов всегда должно выполняться бюджетное ограничение , - сумма долей равняется единице. Значение мы можем выразить через .
Обозначим Задачу выбора портфеля с наименьшим риском можно записать (10.3) Запишем условие первого порядка для данной задачи (возьмем производную по х и приравняем ее к нулю) откуда, при условии, что знаменатель не равен нулю, получим (10.4)
Формула (10.4) дает возможность определить портфель, риск (стандартное отклонение доходности) которого минимален. Рассмотрим некоторые частные случаи. 1. Пусть тогда В этом случае риск портфеля равен нулю. 2. В случае, когда , то есть какая-либо взаимосвязь между доходностью первого и второго актива отсутствует, портфель с наименьшим риском выбирается так:
Стандартное отклонение такого портфеля будет равно . Если и , риск портфеля будет меньше, чем риск каждого из отдельно взятых активов. 3. Когда , оптимальный портфель выбирается следующим образом:
Риск такого портфеля также равен нулю: но существует важное отличие от случая, когда : при совершенной отрицательной корреляции оптимальные объемы инвестиций в каждый из активов были положительными. Здесь же, либо либо меньше нуля (причем, если то и наоборот). Отрицательный объем инвестиций означает короткую продажу - когда продается актив, взятый в долг с обязательством последующего возврата. Следовательно, в случае положительной корреляции, для того, чтобы получить портфель с минимальным риском, необходимо коротко продать один из активов, и инвестировать все имевшиеся и вырученные за счет короткой продажи средства во второй актив.
Дата добавления: 2014-01-04; Просмотров: 1364; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |