Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Доведення

Нехай ‑ фундаментальна послідовність лінійних функціоналів. Тоді для кожного ε >0 знайдеться таке N, що < ε, для . Звідси для виходить

,

тобто, для числова послідовність фундаментальна, простір – повний, як наслідок - сходиться.

Покладемо

Перевіримо, що ƒ представляє собою неперервній лінійній функціонал. Лінійність перевіряється безпосередньо:

.

Для доведення неперервності функціонала повернемося до нерівності < εі перейдемо в ньому до границі при , отримаємо

.

Звідси випливає, що функціонал обмежений. Але тоді обмежений, а значить і неперервний також функціонал .

Крім того, звідси слідує, що для ε >0 : для , тобто сходиться до .

Підкреслимо, що ця теорема слушна незалежно від того, чи є початковий простір E повним.

<== предыдущая лекция | следующая лекция ==>
Спряжені простори. Приклади | Приклади спряжених просторів
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 292; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.