КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение матричных уравнений
Рассмотрим матричное уравнение АХ = В, где А – (п,п)- матрица с |A| ¹ 0, В - (п,т)- матрица, а Х – неизвестная (п,т)- матрица. Покажем, что существует единственное решение этого уравнения. 1. Пусть решение Х0 $, то есть АХ0= В. Тогда А-1АХ0=А-1В Þ Х0 = А-1В - это означает единственность решения. 2. Подставим Х0 = А-1В в наше уравнение. Получим А(А-1В) = АА-1В = ЕВ = В, то есть Х0 = А-1В является решением уравнения. Это означает существование решения. Покажем, как на практике можно решать матричные уравнения. Как мы видели в 9.3 при |A| ¹ 0 существуют элементарные матрицы Р1, Р2,…,Рr такие, что Pr … P2P1A = D = =diag(d1,…,dn). Умножая это равенство слева на элементарные матрицы III-го типа P1(d1 -1), P2(d2 -1),…,Pп(dп -1), получим P1(d1 -1)P2(d2 -1)…Pп(dп -1)Pr … P2P1A = Е. Таким образом, мы видим, что существуют элементарные матрицы Р1, Р2,…,Рq такие, что Pq … P2P1A = E. Следовательно, Pq … P2P1 = А-1. Отсюда можно получить два вывода. 1. А-1= Pq … P2P1E, то есть для нахождения обратной матрицы надо над строками матрицы Е проделать те же ЭП, что проделывались над строками матрицы А при приведении её к единичной матрице Е. На практике это делают так: записывают матрицу вида (А|Е), и над «длинными» строками этой матрицы делают ЭП так, чтобы слева получилась матрица Е. Тогда справа получится матрица А-1. 2. Для матричного уравнения АХ =В решение Х0 = А-1В = =Pq … P2P1В. Значит, для нахождения Х0 надо над строками матрицы В проделать те же ЭП, что проделывались над строками матрицы А при приведении её к единичной матрице Е. То есть над «длинными» строками матрицы (А|В) надо делать ЭП так, чтобы слева получилась матрица Е. Тогда справа получится матрица А-1В. Теперь рассмотрим матричное уравнение YA = В, где А – (п,п)- матрица с |A| ¹ 0, В - (т,n)- матрица, а Y – неизвестная (т,n)- матрица. Как и ранее, можно показать, что существует единственное решение Y= BA-1 этого уравнения. На практике решать такие матричные уравнения можно двумя способами. 1-й способ – это транспонировать наше уравнение: (YA)t = AtY t = В t, найти, как и ранее, с помощью ЭП над «длинными» строками решение X матричного уравнения AtХ = В t, и затем получить Y = Х t. 2-й способ заключается в следующем. Матрицу А с |A|¹ 0 можно привести к единичной не только элементарными преобразованиями над строками, но также и аналогичным образом элементарными преобразованиями над столбцами. То есть существуют элементарные матрицы Р1, Р2,…,Рt такие, что AP1P2 … Pt = E. Следовательно, P1P2 … Pt = А-1, и А-1 = EP1P2 … Pt, то есть для нахождения обратной матрицы надо над столбцами матрицы Е проделать те же ЭП, что проделывались над столбцами матрицы А при приведении её к единичной матрице Е. На практике это делают так: записывают матрицу вида , и над «высокими» столбцами этой матрицы делают ЭП так, чтобы сверху получилась матрица Е. Тогда снизу получится матрица А-1. Для матричного уравнения YA = В решение Y = BA-1 = =ВP1P2 … Pt получается проделыванием над столбцами матрицы В тех же ЭП, которые проделывались над столбцами матрицы А при приведении её к единичной матрице Е. На практике это делают так: записывают матрицу вида , и над «высокими» столбцами этой матрицы делают ЭП так, чтобы сверху получилась матрица Е. Тогда снизу получится матрица ВА-1.
Дата добавления: 2014-01-04; Просмотров: 692; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |