Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Флуктуации. Распределение Гаусса

Статистическое и чисто термодинамическое описание тепловых процессов различаются тем, что из законов статистической физики с неизбежностью вытекает существование флуктуаций. В то же время вероятность сколько-нибудь заметных флуктуаций в системе, содержащей большое число частиц, чрезвычайно мала.

Открытие многочисленных примеров флуктуационных процессов явилось блестящим подтверждением законов статистической физики и послужило одним из важнейших моментов в окончательном утверждении молекулярной теории.

В работах Эйнштейна и Смолуховского было показано, что целый ряд давно известных физических процессов обусловлен явлениями флуктуаций, и была развита комплексная теория этих вопросов, оказавшихся в прекрасном согласии с экспериментами.

Рассмотрим флуктуации в замкнутой системе.

Пусть система находится в состоянии статистического равновесия и имеет энтропию S0. Предположим теперь, что состояние системы изменяется так, что она переходит в неравновесное состояние с энтропией S.

Будем считать, что изменение состояния системы можно характеризовать изменением некоторого внутреннего параметра x, значение которого зависит от состояния всей системы.

В равновесии x = x0. Пример x – плотность ρ газа, находящегося в замкнутом теплоизолированном сосуде. В состоянии равновесия плотность постоянна по всему объему сосуда x00=const.

В результате флуктуации система может самопроизвольно перейти в неравновесное состояние с переменной плотностью x= ρ(r).

Энтропия системы будет некоторой функцией параметра x: S=S(x). При этом в состоянии равновесия S0=S(x0).

Вероятность застать систему в интервале значений x; x+dx должна быть пропорциональна статистическому весу (числу микросостояний) и величине интервала dx:

.

Для изолированной системы верна формула Больцмана

 

 

Константа определяется из условия нормировки:

 

Или для функции распределения:

(*)

Прежде, чем приступить к интегрированию этой функции, надо ответить на вопрос о пределах ее применимости. Все распределения, приведенные выше, неявно подразумевают классичность поведения x. Поэтому надо найти условие, допускающее пренебрежение квантовыми эффектами.

Как известно из квантовой механики, между квантовыми неопределенностями энергии и какой-либо величины x имеет место соотношение

 

где dx/dt – классическая скорость изменения величины x.

Пусть τ – время, характеризующее скорость изменения нашей величины x, которая имеет неравновесное значение. Тогда

 

Ясно, что говорить об определенном значении величины x можно лишь при условии малости ее квантовой неопределенности

 

Таким образом, квантовая неопределенность энергии должно быть велика по сравнению с. Энтропия системы будет при этом иметь неопределенность

 

Для того, чтобы формула (*) имела реальный смысл, необходимо, очевидно, чтобы кавнтовая неточность энтропии была мала по сравнению с k:

;

Это и есть искомое условие. При слишком низких температурах или при слишком быстром изменении x (слишком малом τ) флуктуации нельзя рассматривать термодинамически, т.к. на первый план выступают чисто квантовые флуктуации.

Выберем x так, что энтропия имеет максимум при x = x0 = 0. Поэтому

,

Величина x при флуктуациях очень мала. Разлагая S(x) в ряд по степеням x и ограничиваясь членом второго порядка, получим

 

где β>0. Тогда получим распределение вероятностей в виде:

 

Нормирование константы A определяется условием

 

Хотя выражение для f(x) относится к малым x, но ввиду быстрого убывания подынтегральной функции с увеличением |x| область интегрирования можно распространить на все значения от -∞ до +∞. Произведя интегрирование, получим

(интеграл Пуассона).

Таким образом, имеем для величины x распределение:

.

Эта формула называется распределение Гаусса. Если обозначить

,

то, беря интеграл, распределение можно записать в виде:

.

Функция f (x) имеет тем более острый максимум, чем меньше < x 2>.

Отметим, что по известному < x 2> можно найти аналогичную величину для любой функции j (x). Ввиду малости x имеем:

<(Dj)2> =

(подразумевается, что функция j(x) мало меняется при значениях x ~ <x2> и что производная dj/dx отлична от нуля при x = 0).

Если, то распределение Гаусса запишется в виде:

.

<== предыдущая лекция | следующая лекция ==>
Решение парадокса Гиббса | Флуктуации термодинамических величин
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 674; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.