Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кинетика фазовых переходов первого рода и проблема роста квазикристаллов

Метастабильное состояние характеризуется конечным временем жизни. При отсутствии конкурирующей (более устойчивой) фазы распад метастабильного состояния начинается с возникновения жизнеспособных зародышей в результате флуктуаций, например капелек жидкости в пересыщенном паре или пузырьков пара в перегретой жидкости.

Минимальная работа W, которую нужно затратить для создания зародыша радиуса r, состоит из объёмного и поверхностного вкладов:

 

r
 
W
Рис. 3.6.
Зависимость W от r показана на рис. 3.6. Положение максимума, определяет размер критического зародыша.

Найдем этот размер:

 

Отсюда

и работа образования критического зародыша

.

При термодинамически обусловлен рост зародыша.

Из формулы видно, что при приближении с бинодали радиус критического зародыша и работа по его образованию возрастают до бесконечности. В другом предельном случае – при приближении к спинодали – работа и радиус стремятся к минимальным значениям.

Для описания зародышей атомных размеров требуется микроскопический подход. Критический зародыш здесь имеет форму и размер, зависящие от близости к спинодали.

В большинстве реальных ситуаций распад метастабильного состояния происходит до достижения заметной скорости гомогенного зародышеобразования, к которому относится теория. В основе этой теории лежит предположение о гомогенности среды, в которой могут возникать зародыши. Возникновение и рост зародышей при этом происходят за счет случайных приходов и уходов молекул.

Начало фазового перехода облегчается влиянием стенок и присутствием в объёме системы различных включений, существенно снижающих работу образования жизнеспособных зародышей устойчивой фазы. В этом случае говорят о гетерогенном зародышеобразовании. Специально поставленные опыты с перегретыми и переохлаждёнными жидкостями приводят к результатам, которые согласуются с предсказаниями теории флуктуационного (гомогенного) зародышеобразования. В опытах альтернативой медленному изменению состояния в «чистой» системе служит режим быстрого создания такого пересыщения, при котором основная доля фазового перехода обусловлена массой флуктуационных зародышей, а вклад гетерогенного зародышеобразования незначителен.

Таким образом, превращение одной фазы в другую при ФП 1-го рода требует перестройки систем и преодоления барьера энергетически невыгодных промежуточных состояний. Благодаря этому возможно существование метастабильного состояния старой фазы в области, где абсолютно устойчивой является новая фаза. В первой стадии процесса число зародышей невелико, каждый зародыш растёт независимо от других, эту стадию называют нуклеаций. В последующей стадии происходит рост и объединение областей новой фазы. Эта стадия называется стадией коалесценции.

Из теории флуктуаций следует, что вероятность флуктуационного образования критического зародыша. Этой же величине пропорционально время жизни метастабильного состояния. Можно показать, что работа при образовании зародыша связана только с изменением энтропии, поскольку при флуктуации работа по расширению зародыша равна работе окружающей среды с обратным знаком. Это же относится и к внутренней энергии.

Изменение размеров зародышей рассматривают как результат случайных присоединений и отрывов частиц от зародыша новой фазы. В среднем такое броуновское движение приводит к уменьшению величины W(R), т.е. к уменьшению зародышей с размером, меньшим критического, и к увеличению зародышей размера больше. За счёт флуктуаций возможен с малой вероятностью рост малого зародыша до размера, после чего с подавляющей вероятностью этот зародыш будет продолжать расти. В области малых размеров вероятность рождения докритических зародышей велика. Диффузия зародышей по размерам из области приводит к потоку зародышей в область закритических размеров. Число зародышей, переходящих в единицу времени в область закритических размеров, в единице объёма системы равно

 

предэкспоненциальный фактор зависит от кинетических характеристик системы. Записанная формула применима к распаду как перегретых, так и переохлажденных состояний.

По мере появления и роста зародышей степень метастабильности начальной фазы падает. Это приводит к увеличению критического размера зародышей и уменьшению вероятности их возникновения. Мелкие зародыши становятся неустойчивыми и исчезают. Определяющую роль на этой стадии приобретает процесс роста крупных зародышей за счёт «поедания» мелких (процесс коалесценции). В случае выпадения растворённого вещества из пересыщенного твёрдого раствора зародыши в целом неподвижны и растут только за счёт диффузионного подвода веществ.

Реальные процессы нуклеации и коалесценции обладают рядом особенностей по сравнению с рассмотренной простейшей моделью. Так, при ФП 1-го рода в кристаллах и жидких кристаллах необходимо учитывать влияние анизотропии, а также энергии упругой деформации, что может приводить к существенному изменению результатов для размера и вероятности возникновения критического зародыша.

Механизм конденсации пересыщенного пара в атмосфере влияет на характер атмосферных осадков. Определение механизмов влияния аэрозольных частиц на образование облаков считается одной из центральных проблем климатологии. Группа американских ученых, выполняя пролеты через облака, провела непосредственные измерения состава водяных капель и кристаллов льда, участвующих в формировании облаков. Анализ полученной информации показал, что подавляющее большинство аэрозольных частиц, на которых формируются кристаллы льда, представляет собой либо пыль (около 50% всех случаев), либо биологическое вещество — бактерии, пыльцу, грибковые споры (33%). Таким образом, в данном случае речь идет о гетерогенном зародышеобразовании.

Замедление процессов образования и роста зародышей при переохлаждении используют в производстве стекла, аморфных металлов, при закалке сталей и других сплавов.

Стеклообразное состояние — твёрдое аморфное метастабильное состояние вещества, в котором нет выраженной кристаллической решётки, условные элементы кристаллизации наблюдаются лишь в очень малых кластерах (в так называемом «среднем порядке»). Обычно это смеси (переохлаждённый ассоциированный раствор) в которых создание кристаллической твёрдой фазы затруднено по кинетическим причинам. Уникальное строение стекла, которое не является ни твёрдым телом, ни очень вязкой жидкостью, формируется в результате того, что атомы твердеющего стекла не успевают занять свои «правильные» позиции в кристалле.

Стёкла образуются в результате переохлаждения расплавов со скоростью, достаточной для предотвращения кристаллизации. Такая скорость называется критической скоростью охлаждения. Практически любое вещество из расплавленного состояния может быть переведено в стеклообразное состояние. Некоторые расплавы (как то — отдельных стеклообразующих веществ) не требуют для этого быстрого охлаждения. Однако некоторые вещества (такие как металлосодержащие расплавы) требуют очень быстрого охлаждения, чтобы избежать кристаллизации. Так, для получения металлических стёкол необходимы скорости охлаждения 105—106 К/с.

Многие стёкла обычно длительное время сохраняют аморфное состояние. В природе стекла существуют в составе вулканических пород, которые быстро охладились из жидкой магмы при соприкосновении с холодным воздухом или водой. Иногда встречаются стёкла в составе метеоритов, расплавившихся при движении в атмосфере.

<== предыдущая лекция | следующая лекция ==>
Приведенное уравнение состояния | Проблема роста квазикристаллов
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 400; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.