Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цифровые средства обработки информации в системах




Многие задачи требуют формирования таких сложных законов управления объектами, которые не могут быть реализованы традиционными элементами и устройствами автоматики. Так, например, в системах управления движущимися объектами требуются сложные вычисления с преобразованием координат, решением прямоугольных и сферических треугольников, счислением пути и т. п. Очень сложные вычисления производятся в адаптивных системах управления. Эти задачи решаются с помощью средств вычислительной техники, вводимых в контур управления динамической системой.

По принципу действия электронно-вычислительные машины, используемые в системах управления, разделяются на два типа: аналоговые (АВМ) и цифровые (ЭВМ).

Аналоговые электронно-вычислительные машины представляют собой вычислительные устройства непрерывного типа с результатами вычислений в виде непрерывного электрического сигнала, отражающего значение определяемой переменной. Выходной сигнал АВМ может быть использован как управляющее воздействие. АВМ легко сопрягается с элементами систем непрерывного управления, удобна и эффективна для решения дифференциальных уравнений как линейных, так и нелинейных. Аналоговые вычислительные системы легко наращивается из отдельных блоков и машин в целом.

Конструктивно АВМ собирается в виде совокупности решающих блоков, организованных в вычислительную систему с помощью электрических связей так, что результат математической операции передается с выхода одного блока на входы других. Результат решения задачи на АВМ можно измерять, регистрировать с помощью записывающих приборов, наблюдать на экранах осциллографов.

Обычный состав АВМ включает в себя следующие функциональные части: операционные усилители, наборное поле, устройства управления, измерительную и регистрационную аппаратуру, источники питания. Имея практически одинаковый набор устройств различных типов, АВМ отличаются количеством операционных блоков, определяющим возможности машины, которые выражаются в основном в порядке дифференциальных уравнений, решаемых на АВМ. По этому признаку АВМ подразделяются на три класса: малые (до 20 операционных блоков), средние (20—60 блоков) и большие (свыше 60 блоков).

Недостатком АВМ является ограниченная точность решения задач и отсутствие устройств памяти для хранения больших объемов информации. Широкое внедрение цифровых электронно-вычислительных машин существенно снизило область применения и масштабы использования АВМ. Тем не менее, в сфере управления техническими системами и технологическими процессами роль АВМ достаточно велика. Эти машины проще, чем ЭВМ, работают в реальном масштабе времени и без проблем сопрягаются с элементами непрерывных автоматических систем.

Цифровые электронно-вычислительные машины Современная теория и практика управления немыслимы без использования ЭВМ. Если имеется численный метод решения, то с помощью ЭВМ можно решить любую задачу в любой области науки, техники, экономики, общественной жизни.

В практике управления используются ЭВМ различных типов, которые подразделяются на три вида: большие ЭВМ, малые или мини-ЭВМ, и микроЭВМ. Все они имеют общие принципы работы. Структура ЭВМ обусловлена содержанием процесса обработки информации, включающем следующие основные операции: подготовка данных для ввода в вычислительную машину, ввод исходных данных, собственно вычисления и решение задач, вывод результатов решения. Соответственно, ЭВМ включает следующие основные элементы: процессор, оперативное запоминающее устройство (ОЗУ), внешние запоминающие устройства (ВЗУ), устройства ввода и вывода.

Процессор — центральное устройство ЭВМ для преобразования информации, управления вычислительными процессами и взаимодействием устройств вычислительной машины. Основными частями процессора являются арифметико-логическое устройство (АЛУ) и устройство управления (УУ). Арифметико-логическое устройство осуществляет арифметическое и логическое преобразование информации по командам программы. Устройство управления определяет последовательность выборки команд из памяти, вырабатывает управляющие сигналы, координирует работу ЭВМ, обрабатывает сигналы прерывания программ, осуществляет защиту памяти, контролирует и диагностирует работу процессора.

ОЗУ составляет оперативную память ЭВМ, в которой хранится информация. Информация из ОЗУ в виде команд программы и исходных операндов передается в АЛУ. Из процессора в ОЗУ передаются конечные и промежуточные результаты преобразования информации.

ВЗУ - внешняя память ЭВМ, в качестве которой используются накопители на различных физических носителях долговременного хранения информации с возможностью оперативной записи и считывания.

Информация в ЭВМ хранится в двоично-кодированном виде, в двоичной системе счисления. Двоичная система счисления позволяет сравнительно просто обеспечить технически выполнение вычислительных операций. Выполнение программы в ЭВМ — это последовательное осуществление в заданном порядке арифметических и логических операций над словами (кодами), действий по организации вычислительного процесса и оценки получающихся результатов.

Микро-ЭВМ и микроконтроллеры. С развитием микроэлектроники цена одноплатной ЭВМ с возможностями мини-компьютера резко упала, и вычислительные мощности стало возможно наращивать модулями. Микро-ЭВМ дали толчок совершенствованию управляющего оборудования, они заменяют аналоговые регуляторы даже в одноконтурных системах управления. Сконструированы иерархические системы управления с большим количеством микропроцессоров и спроектированы регуляторы специального назначения на базе микро-ЭВМ. В настоящее время во всём мире выпускается огромная номенклатура микро-ЭВМ, предназначенных для задач управления и являющихся, по существу, техническими средствами автоматизации. Однако необходимо всё же разделить множество таких управляющих микро-ЭВМ на две группы:

- микро-ЭВМ, наследующие архитектуру персональных компьютеров и совместимых с ними не только через интерфейсы, но и на уровне архитектуры и программного обеспечения;

- микроконтроллеры, которые берут своё начало от узкоспециализированных микропроцессорных платформ (PIC- контроллеров, процессоров цифровой обработки сигналов и др.).

Роль микро-ЭВМ в задачах автоматизации процессов повышается в связи с тем, что управление процессами требует не столько вычислений, сколько логической увязки разнообразной информации. В микро-ЭВМ значительно легче, чем в универсальных ЭВМ, осуществляется связь с измерительными и исполнительными органами управляемого процесса.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1423; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.