КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
В 7. Корреляция рядов динамики. Регрессия рядов динамики
Статистика в анализе рядов динамики ставит перед собой задачу совместного анализа рядов динамики, уровни которых технологически или экономически связаны друг с другом. Например, ряд уровня рентабельности связан с рядом уровня себестоимости продукции, с рядом уровня трудоёмкости и т.д. Причем изменение одного показателя вызывает изменение другого. Поэтому перед статистическим исследование “связанных” друг с другом рядов стоит проблема: 1) оценить тесноту связи между значениями уровней различных рядов; 2) построить уравнение регрессии, связывающее результативный показатель, факторный показатель и временной параметр t.
Проблема оценки тесноты связи осложняется возможным наличием автокорреляции в рядах динамики. Поскольку технологический процесс производства и реализации сельскохозяйственной продукции растянут во времени, то может оказаться, что каждый последующий уровень ряда зависит с определённой величиной лага L от предыдущих значений уровней ряда. Это явление называется автокорреляцией. Наличие автокорреляции в рядах динамики искажает результаты исследования. Поэтому разные авторы в учебной литературе предлагают несколько различных методик оценки тесноты связи и построения уравнения регрессии в рядах динамики и позволяющих исключить влияние автокорреляции. Пусть есть два ряда с трендами: (7.27) Чтобы избежать автокорреляции или влияния автокорреляции на результаты исследований, некоторые авторы предлагают проводить анализ не уровней ряда, а их отклонений от теоретических значений по тренду, если тренд существует, или от средних значений, если отсутствует тренд и колебания показателей случайны: или или (7.28)
Составляется таблица для расчета парного коэффициента корреляции на основании значений абсолютных отклонений:
Таблица 7.13. Схема расчетов для оценки тесноты связи факторов
Парный коэффициент корреляции факторов Х и У будет равен: (7.29)
Дата добавления: 2014-01-04; Просмотров: 678; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |