![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Апроксимація
Апроксимація та інтерполяція Однією із важливих задач чисельних методів є математичний опис зв'язків в процесах і явищах. Універсальним способом такого опису є аналітична функціональна залежність
якою незалежним змінним Наголосимо, що мова про апроксимацію йде в тому випадку, коли є потреба у визначенні функції Така заміна робиться, якщо нічого невідомо відносно функції Наприклад, у проектуванні мостів, нам завжди потрібна функція, що описує зміну тиску на дану балку прогонової будови в залежності від положення одиничної сили, що переміщається в поперечному напрямку. Сьогодні в теорії споруд немає такої функції в загальному виді. Але її можна одержати апроксимацією дискретного чисельного розв’язку задачі чи на основі таблиці експериментальних даних. Або інший приклад: апроксимація часто потребується там де є підбір аналітичної залежності, що описує результати експерименту. Не менш важливою областю апроксимації є апріорне наближене представлення шуканої функції в чисельних методах теорії споруд.
Як апроксимуючу функцію, часто застосовуються алгебраїчний поліном ступеня n. Така функція має вид:
тобто парабола n – ого ступеня. Полином (1.2) має n+1 коефіцієнт. Відповідним підбором коефіцієнтів можна задовольнити n+1 умов. Підбір виконується шляхом розв’язку системи n+1 лінійних рівнянь з вектором вільних членів з відомих значень функції Звідси випливає, що якщо ми хочемо апроксимувати невідому функцію
При цьому апроксимуюча крива проходить через кожний вузол. Ця загальна процедура припасування кривої і являє собою апроксимацію функції, яка задана таблицею. Проте, в задачі припасування кривої, як правило, не ставиться вимога, щоби крива проходила через кожний вузол. Звичайно криву прагнуть провести так, щоб її відхилення від табличних даних були мінімальними. Найбільш поширеним способом мінімізації відхилення є метод найменших квадратів. За цим методом апроксимуюча функція визначається так, щоб звести до мінімуму суму квадратів різностей між табличними значеннями в вузлах та апроксимуючої кривої. Іншим, дуже поширеним способом апроксимації є застосування сплайнів. Сплайном називається функція виду:
де
У практиці апроксимації найчастіше застосовуються квадратні і кубічні сплайни. Так квадратний сплайн (
Найбільш поширеним, і сьогодні навіть класичним, став кубічний сплайн (n=3). Сплайн третього ступеня має яскраву механічну інтерпретацію: це тонка сталева лінійка, вигнута таким чином, щоб вона стикалася з заданими точками дискретних значень шуканої функції Теорія сплайнової апроксимації інтенсивно розвивалася в останні 30 років і тепер вважається універсальним методом. Апроксимація сплайнами є в усіх відомих математичних і графічних програмних комплексах. В теорії споруд часто застосовується апроксимація тригонометричним поліномом. Функція виду.:
де L – довжина відрізку апроксимації, називається тригонометричним поліномом Наближення тригонометричним поліномом часто застосовується для апроксимації функції в чисельних дискретних розв’язках задач теорії споруд.
Дата добавления: 2014-01-05; Просмотров: 1930; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |