Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Операторы

В информационных системах это правило, переводящее некоторый объект или систему из одного состояния в другое, элемент решения задачи. В качестве оператора, например, может выступать модель, реализующая некоторое преобразование над входными данными.

Рассмотрим функциональное отображение , где и ─ множества функций: .

В этом случае отображение называется оператором.

Оператор представляет собой множество упорядоченных пар, первый и второй элементы которых представляют собой функции:

Таким образом, под операторами понимают отображение, ставящее в соответствие функции другую функцию («оператор на пространстве функций» звучит лучше, чем «функция от функции»).

.

В математике и технике широко применяется условная форма записи операторов, аналогичная алгебраической символике. Такая символика в ряде случаев позволяет избежать сложных преобразований и записывать формулы в простой и удобной форме. Аргументы оператора называются операндами, число операндов называется арностью оператора (например, одинарный, бинарный). Написание операторов можно систематизировать следующим образом:

- префиксная: где первым идёт оператор и операнды следом, например:

;

- постфиксная: если символ оператора следует за операндами, например:

;

- инфиксная: оператор вставляется между операндами, применяется преимущественно с двоичными операторами:

;

 

- позиционная: знак оператора опускается, оператор присутствует неявно. Чаще всего не пишется оператор произведения (переменных, численного значения на физическую единицу, матриц, композиция функций), например, 3 кг. Такая способность одного оператора действовать над разнородными сущностями достигается перегрузкой операторов;

- подстрочная или надстрочная слева или справа; главным образом используется для операций возведения в степень и выбора элемента вектора по индексу.

<== предыдущая лекция | следующая лекция ==>
Пример 2.17 | Примеры операторов
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 345; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.