КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Производные и дифференциалы высших порядков
Частные производные функции z = f (x,y) являются, в свою очередь, функциями переменных х и у. Следовательно, можно найти их частные производные по этим переменным. Обозначим их так:
Таким образом, получены четыре частные производные 2-го порядка. Каждую из них можно вновь продифференцировать по х и по у и получить восемь частных производных 3-го порядка и т.д. Определим производные высших порядков так:
Определение 3.2. Частной производной n -го порядка функции нескольких переменных называется первая производная от производной (n – 1)-го порядка.
Частные производные обладают важным свойством: результат дифференцирования не зависит от порядка дифференцирования (например, Теорема 3.3. Если функция z = f (x,y) и ее частные производные
Доказательство. Рассмотрим выражение
Изменим порядок слагаемых в выражении для А:
Следствие. Указанное свойство справедливо для производных любого порядка и для функций от любого числа переменных.
Дифференциалы высших порядков.
Определение 3.2. Дифференциалом второго порядка функции u = f (x, y, z) называется
Аналогично можно определить дифференциалы 3-го и более высоких порядков:
Определение 3.3. Дифференциалом порядка k называется полный дифференциал от дифференциала порядка (k – 1): d k u = d (d k- 1 u).
Свойства дифференциалов высших порядков.
Лекция 4.
Дата добавления: 2014-01-05; Просмотров: 340; Нарушение авторских прав?; Мы поможем в написании вашей работы! |