КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Относительно производной
Дифференциальные уравнения первого порядка, разрешенные
Рассмотрим уравнение вида Можно показать, что общее решение такого уравнения зависит от одной произвольной постоянной. С геометрической точки зрения уравнение (16.2) устанавливает зависимость между координатами точки на плоскости и угловым коэффициентом
Примеры.
у у
х х
Рис. 1. Рис. 2.
2)
Часто для построения интегральных кривых удобно предварительно найти геометрическое место точек, в которых касательные к искомым интегральным кривым сохраняют постоянное направление. Такие линии называются изоклинами.
Пример. Изоклины уравнения
Задача Коши для уравнения первого порядка. Как уже было сказано, общим решением уравнения (16.2) является все множество функций, обращающих при подстановке рассматриваемое уравнение в тождество. Пусть теперь требуется найти решение этого уравнения, удовлетворяющее условию у (х0) = у0, (16.3) называемому начальным условием. Если общее решение уравнения (16.2) задается формулой у = φ (х, С), (16.4) то значение постоянной С, соответствующее поставленному начальному условию, можно определить, подставив в равенство (16.4) х = х0 и у = у0.
Определение 16.3. Задача выбора из общего решения (16.4) уравнения (16.2) решения, удовлетворяющего начальному условию (16.3), называется задачей Коши, а выбранное решение называется частным решением уравнения (16.2).
Замечание. Если воспринимать множество всех решений уравнения (16.2) как множество интегральных кривых на плоскости, то ставится задача поиска той из них, которая проходит через точку с координатами (х0, у0). Выясним, при каких условиях такая кривая существует и является единственной.
Дата добавления: 2014-01-05; Просмотров: 346; Нарушение авторских прав?; Мы поможем в написании вашей работы! |