КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнения, допускающие понижение порядка
В некоторых случаях порядок дифференциального уравнения может быть понижен, что обычно облегчает его интегрирование. Рассмотрим несколько типов подобных уравнений.
1. Уравнение не содержит искомой функции и ее производных по порядок (k – 1) включительно: . (18.6) В этом случае можно сделать замену р = у(k), которая позволяет понизить порядок уравнения до n – k, так как после замены уравнение примет вид . Из этого уравнения можно найти р = р (х, С1, С2,…, Сn-k), а затем найти у с помощью интегрирования k раз функции р = р (х, С1, С2,…, Сn-k).
Пример. Уравнение при замене становится уравнением 1-го порядка относительно р: , откуда . Тогда .
2. Уравнение не содержит независимой переменной: F (y, y′,…, y(n)) = 0. (18.7) Порядок такого уравнения можно понизить на единицу заменой у′ = р(у). При этом производные функции f(x) по аргументу х нужно выразить через производные р по у: и т.д.
Пример. Пусть тогда . Отметим частное решение р = 0, то есть Если после сокращения на р получим
3. Уравнение F (х, y, y′,…, y(n)) = 0 однородно относительно аргументов y, y′,…, y(n ), то есть справедливо тождество В этом случае можно понизить порядок уравнения на единицу, вводя новую неизвестную функцию z, для которой . Тогда и т.д.
Дата добавления: 2014-01-05; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |