КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операции над полиномами
Рассмотрим полином вида Pn(x)=p1xn+p2xn-1+...+pnx+an+1. Соответственно будем обозначать Р - n+1-мерный вектор коэффициентов, Х - массив значений аргумента. При вычислении значений полинома для элементов массива можно использовать функцию polyval(P,X):
С помощью функции polyvalm(P,X) можно вычислять значения матричного полинома для квадратной матрицы Х:
Умножение полиномов Сm+n(x)=Pm(x) x Qn(x) выполняется командой C=conv(P,Q) - Деление полиномов можно реализовать командой [C,R]=deconv(A,B), где С -частное и R - остаток от деления А на В.
Вычисление производных от полинома, произведения и отношения полиномов производится соответственно командами dp=polyder(P), dc=polyder(A,B) и [f,g]=polyder(A,B):
Вычисление корней полинома реализуется функцией roots(P), а построение полинома по его корням - функцией poly(R).
Функция poly(А) обеспечивает построение характеристического полинома |lE-A|=0 (см. проблему собственных значений):
В приложениях, особенно связанных с преобразованием Лапласа при решении дифференциальных уравнений, оперируют с отношениями полиномов и представлениями их в виде простых дробей: , где sk - простые корни полинома Qn(s); если некоторый корень sj имеет кратность m, то соответствующее слагаемое представляется в виде, Команда [r,s,f] =residue(P,Q) дает разложение отношения полиномов на простые дроби (в случае близких корней возможна значительная погрешность). В случае кратного корня пользуются функцией rj=resi2(P,Q,sj,m,j), где j -номер вычисляемого коэффициента (по умолчанию j=m); по умолчанию m=1 (простой корень). Команда [P,Q] =residue(r,s,f) выполняет обратное действие свертки разложения в отношение полиномов. Выполнив действия
видим, что В случае кратного корня
видим разложение: наверх следующая глава
Дата добавления: 2014-01-05; Просмотров: 859; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |