Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Прогнозирование ВР

Задача прогнозирования заключается в определении оценки следующего значения ВР при известных прошлых текущих значениях: y^t+i -?

Задача решается на основе модели тренда ВР.

Тренд – тенденция медленных и краткосрочных изменений ВР. Для описания тренда используют линейные либо линеарилзуемые функции. Предполагается, что функции локально адекватны (адекватно описывают ВР в окрестности yt). Для определения параметров функции используют n значений ВР (текущее и n-1 - предыдущее). Здесь n – «основание прогноза» или длина обучающей выборки.

Для определения параметров используют МНК (или др.).

Поскольку характер тренда непрерывно меняется, используем адаптивные алгоритмы, в которых параметры определяются заново в каждый текущей момент времени.

 

Прогнозирующие функции делятся на:

1. полиномиальные, линейные относительно параметров:

 

yt+i = b0+ ∑ bjij (8)

 

p- порядок модели, обычно 1 или 2; i – интервал прогнозирования.

 

zB1 Модель первого порядка (линейная):

 

yt+i = b0+ b1i (9)

МНК- оценки коэффициентов:

 

b0=2/(n(n+1))[(2n-1) ∑ yt-i -3 ∑ i yt-i ]

 

b1=6/(n(n+1))[ ∑ yt-i -2/(n-1) ∑ i yt-i ] (10)

 

Модель второго порядка (квадратичная):

 

yt+i = b0+ b1i + b2i2 (11)

МНК- оценки коэффициентов:

 
 


b0=3/(n(n+1)(n+2))[(3n(n-1)+2) ∑ yt-i - 6/(2n-1) ∑ i yt-i + 10∑ i2 yt-i ]

 

b1=6/(n(n+1)(n+2))[3(2n-1) ∑ yt-i - (2(2n-1)(8n-11))/((n-1)(n-2)) ∑ i yt-i + 30/(n-2)∑ i2 yt-i ]

 

b2=30/(n(n+1)(n+2))[ ∑ yt-i - 6/(n-2) ∑ i yt-i + 6/((n-1)(n-2)) ∑ i2 yt-i ]

 

(12)

 

  1. Модели, сводящиеся к линейным:

а) степенная функция

yt+i = aib (13)

 

может быть сведена к линейной (Y = lny; I = lni).

 

  1. Экспоненциальные модели:

а) простая ЭМ:

yt+i = aebi (→Y=lny) (14)

б) логарифмическая парабола:

yt+i = aebi+ci2 (Y=lny) (15)

в) S-образная кривая:

yt+i = ea+b/i (Y=lny; I=1/i) (16)

 

4. Гиперболические модели:

а) первого типа:

yt+i = a+b/i (I=1/i) (17)

б) второго типа:

 

yt+i = 1/(a+bi) (y=1/y) (18)

в) третьего типа:

yt+i = i/(a+bi) (y=1/y; I=1/i) (19)

 

5. Логарифмические модели:

а) логическая кривая:

yt+i = a+blni (I=lni) (20)

б) обратнологарифмическая кривая:

yt+i = 1/(a+blni) (y=1/y; I=lni) (21)

 

Параметры линеаризуемых функций находят обычно по МНК.

 

6. Модифицированная экспонента и сводящиеся к ней кривые:

а) модифицированная экспонента:

yt+i = a+bei (22)

 

(a,b,c. определяются по методу Брианта→(24))

б) кривая Гомперца:

yt+i = abei (Y=lny; A=lna; B=lnb) (23)

 

в) логистическая кривая Перла-Рида

yt+i = 1/(a+bei) (y=1/y; I=lni)

Метод Брианта:

 
 


с = ((n-1) ∑ yt-iyt-1-i - ∑ yt-i ∑ yt-1-i) / ((n-1) ∑ y2t-i – [ ∑ yt-i]2

 

b=(n- ∑ yt-i ci - ∑ yt-i ∑ ci) / (n ∑ c2i – [∑ c2i]2) (24)

 

a=(∑ yt-i - b ∑ ci) / n

 

7. Авторегрессионные модели:

yt= - ∑ aiyt-i + ut (25)

 

p-порядок; ut-WN, возбуждающий модель АР; аi- коэффициенты АР, определяемые из суммы уравнений Юла-Уолкера ((17)(31)).

zBi для AP коэффициенты равны:

 

a1= - (Ry(1)[Ry(0)-Ry(2)])/(Ry2(0)-Ry2(1)); a2= - (Ry2(0)Ry(2)-Ry2(1))/ (Ry2(0)-Ry2(1)) (26)

 

<== предыдущая лекция | следующая лекция ==>
Сглаживание ВР полиномами | Оценка адекватности прогнозирующей функции по критерию Фишера
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 406; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.