КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Прогнозирование ВР
Задача прогнозирования заключается в определении оценки следующего значения ВР при известных прошлых текущих значениях: y^t+i -? Задача решается на основе модели тренда ВР. Тренд – тенденция медленных и краткосрочных изменений ВР. Для описания тренда используют линейные либо линеарилзуемые функции. Предполагается, что функции локально адекватны (адекватно описывают ВР в окрестности yt). Для определения параметров функции используют n значений ВР (текущее и n-1 - предыдущее). Здесь n – «основание прогноза» или длина обучающей выборки. Для определения параметров используют МНК (или др.). Поскольку характер тренда непрерывно меняется, используем адаптивные алгоритмы, в которых параметры определяются заново в каждый текущей момент времени.
Прогнозирующие функции делятся на: 1. полиномиальные, линейные относительно параметров:
yt+i = b0+ ∑ bjij (8)
p- порядок модели, обычно 1 или 2; i – интервал прогнозирования.
zB1 Модель первого порядка (линейная):
yt+i = b0+ b1i (9) МНК- оценки коэффициентов:
b0=2/(n(n+1))[(2n-1) ∑ yt-i -3 ∑ i yt-i ]
b1=6/(n(n+1))[ ∑ yt-i -2/(n-1) ∑ i yt-i ] (10)
Модель второго порядка (квадратичная):
yt+i = b0+ b1i + b2i2 (11) МНК- оценки коэффициентов: b0=3/(n(n+1)(n+2))[(3n(n-1)+2) ∑ yt-i - 6/(2n-1) ∑ i yt-i + 10∑ i2 yt-i ]
b1=6/(n(n+1)(n+2))[3(2n-1) ∑ yt-i - (2(2n-1)(8n-11))/((n-1)(n-2)) ∑ i yt-i + 30/(n-2)∑ i2 yt-i ]
b2=30/(n(n+1)(n+2))[ ∑ yt-i - 6/(n-2) ∑ i yt-i + 6/((n-1)(n-2)) ∑ i2 yt-i ]
(12)
а) степенная функция yt+i = aib (13)
может быть сведена к линейной (Y = lny; I = lni).
а) простая ЭМ: yt+i = aebi (→Y=lny) (14) б) логарифмическая парабола: yt+i = aebi+ci2 (Y=lny) (15) в) S-образная кривая: yt+i = ea+b/i (Y=lny; I=1/i) (16)
4. Гиперболические модели: а) первого типа: yt+i = a+b/i (I=1/i) (17) б) второго типа:
yt+i = 1/(a+bi) (y=1/y) (18) в) третьего типа: yt+i = i/(a+bi) (y=1/y; I=1/i) (19)
5. Логарифмические модели: а) логическая кривая: yt+i = a+blni (I=lni) (20) б) обратнологарифмическая кривая: yt+i = 1/(a+blni) (y=1/y; I=lni) (21)
Параметры линеаризуемых функций находят обычно по МНК.
6. Модифицированная экспонента и сводящиеся к ней кривые: а) модифицированная экспонента: yt+i = a+bei (22)
(a,b,c. определяются по методу Брианта→(24)) б) кривая Гомперца: yt+i = abei (Y=lny; A=lna; B=lnb) (23)
в) логистическая кривая Перла-Рида yt+i = 1/(a+bei) (y=1/y; I=lni) Метод Брианта: с = ((n-1) ∑ yt-iyt-1-i - ∑ yt-i ∑ yt-1-i) / ((n-1) ∑ y2t-i – [ ∑ yt-i]2
b=(n- ∑ yt-i ci - ∑ yt-i ∑ ci) / (n ∑ c2i – [∑ c2i]2) (24)
a=(∑ yt-i - b ∑ ci) / n
7. Авторегрессионные модели: yt= - ∑ aiyt-i + ut (25)
p-порядок; ut-WN, возбуждающий модель АР; аi- коэффициенты АР, определяемые из суммы уравнений Юла-Уолкера ((17)(31)). zBi для AP коэффициенты равны:
a1= - (Ry(1)[Ry(0)-Ry(2)])/(Ry2(0)-Ry2(1)); a2= - (Ry2(0)Ry(2)-Ry2(1))/ (Ry2(0)-Ry2(1)) (26)
Дата добавления: 2014-01-05; Просмотров: 406; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |