Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Переходные процессы в электрических цепях

Основные понятия о переходных процессах

Под переходным процессом в общем случае понимают переход от одного устойчивого состояния системы к другому, устойчивому (стационарному) состоянию. В данном случае это понятие применяется к электрической цепи, которая может находиться в следующих состояниях:

  • Состояние покоя: отключены все источники и нет запасов энергии в цепи;
  • Цепь находится под действием постоянного тока и напряжения;
  • Цепь находится под действием переменного (гармонического) тока и напряжения;
  • Цепь находится под действием периодического тока и напряжения;
  • Цепь находится под действием разных источников (смешанный режим)

В электрических цепях различают установившийся режим работы и переходной режим работы.

Установившийся - это такой режим, когда все токи и напряжения являются строго периодическими функциями времени или постоянными величинами. Энергетическое состояние цепи в этом случае можно оценить максимальными величинами запасов энергии в энергоемких элементах - индуктивностях и емкостях.

;

Переходным режимом работы называется режим перехода электрической цепи из одного устоявшегося состояния в другое установившееся состояние с другим запасом энергии.

Переходной процесс начинается при каком-то резком, скачкообразном изменении в электрической цепи за счет срабатывания (коммутации) так называемых коммутационных элементов или ключей. Эти элементы обычно имеют два состояния: исходное и рабочее (на схемах они изображаются в исходном состоянии).

 

- ключ на замыкание (в исходном состоянии разомкнут Rкл.= ∞)

- ключ на размыкание (в исходном замкнут Rкл.=0)

Реальные ключи имеют некоторое конечное значение сопротивления и конечное время срабатывания. У идеального ключа мгновенное срабатывание, т.е. tср.кл.=0. Технически срабатывание ключа называют коммутацией (коммутировать – это значит соединять проводники).В различной аппаратуре имеется много ключей разных видов и происходит много коммутаций. Первую коммутацию обычно принимают за начало отсчета. Обычно первая коммутация – подключение источника питания. При коммутациях токи и напряжения в цепи изменяются, при этом они могут быть как непрерывными, плавными функциями времени, так и скачкообразными.

Значения токов и напряжений в элементах цепи до коммутации называются начальными условиями или значениями. Значения токов и напряжений в момент времени, когда переходной процесс закончился, называются конечными условиями или значениями.

При исследовании переходных процессов рассматриваются следующие моменты времени:

- до коммутации t<0

- непосредственно перед коммутацией t=0

- в момент коммутации t=0

- непосредственно после коммутации t=0+

- после окончания переходного процесса t®¥

Законы коммутации

Для анализа переходного процесса используют основные физические положения о непрерывности потокосцепления в индуктивных элементах и заряда в емкостных элементах.

Считается, что энергия не может изменяться скачком, т.е. мгновенно – это касается энергоемких элементов (L и C). На этой основе установлено два закона коммутации.

Математически первый закон коммутации запишется в виде формулы:

yS (0-) = yS (0) = yS (0+)

Суммарное потокосцепление индуктивных элементов в цепи не может изменяться скачком в момент коммутации и является непрерывной функцией времени. Непосредственно после коммутации оно равно значению в момент коммутации и значению непосредственно перед коммутацией (предел слева равен пределу с права).

Частный случай: если индуктивные элементы в момент коммутации не меняют свои параметры, то закон коммутации будет справедлив для токов индуктивных элементов, поскольку потокосцепление

yк(t) = Lк·iк(t), Lк = const, iLк(0-) = iLк(0) = iLк(0+).

Практическая формулировка: если индуктивность не меняется в момент коммутации, то ток в индуктивном элементе не изменяется скачком и в момент коммутации равен току в индуктивности непосредственно перед коммутацией.

Математическая запись второго закона коммутации имеет вид:

qS (0-) = qS (0) = qS (0+)

Частный случай: если емкость не меняется в момент коммутации, то закон действителен для емкостного напряжения qк = Cк·uк,

Cк = const, uCк(0-) = uCк(0) = uCк(0+).

Практическая формулировка: если емкость не меняется в момент коммутации, то напряжение на емкостном элементе не изменяется скачком и в момент коммутации равно напряжению на емкости непосредственно перед коммутацией

Физическое обоснование этих законов обусловлено невозможностью получения бесконечно больших величин. Если, например, ток (потокосцепление) в индуктивности изменится скачком, то скачком должна измениться и энергия индуктивности, что приводит к бесконечно большой мощности, поскольку мощность это производная энергии. Аналогично и для емкостного напряжения (заряда). Можно использовать и соотношения

и

Начальные и конечные условия

Одной из основных задач в расчетах переходных процессов является определение начальных условий, что делается на основе законов теории цепей. Начальными условиями называются значения электрических величин в начальный момент времени t=0 в момент коммутации. Начальные условия при переходных процессах разделяют на независимые (связаны с законами коммутации) и зависимые (все остальные). Независимые условия – токи в индуктивных элементах iL(0) и напряжения на емкостных элементах uC(0) в момент коммутации (при условии, что L и C – const они не изменяются скачком).

Аналогично для емкости

Значения величин после окончания переходного процесса (t®¥) называются конечными условиями или установившимися значениями. Они могут быть постоянными или периодическими.

При определении начальных и конечных условий удобно пользоваться схемами замещения элементов в различные моменты времени.

Схемы замещения элементов в различные моменты времени

Источники энергии: они представляются соответственно источниками тока и напряжения с учетом их зависимости от времени до и после коммутации.

Резисторы: если они безинерционные, так резисторами и остаются с учетом их изменения во времени. Реактивные: элементы (индуктивности и емкости) имеют специфические схемы замещения.

 

t Элементы t=0-   t=0   t=∞  
Индуктивность   В зависимости от источника, действующего в цепи: 1) нет источников – неопределенная ситуация; 2) ист. постоянного действия - перемычка (к.з.)   3) источник гармонического действия - сопротивление
 
 

 

 

При любых источниках есть два варианта: 1) нулевые нач. условия (iL(0-)=0). т.е. нет запаса энергии, то iL(0)=0 - разрыв
 
 

 

 


2) ненулевые нач. условия – источник тока

В зависимости от источника  
Емкость В зависимости от источника, действующего в цепи (по принципу дуальности): 1) нет источников – неопределенная ситуация; 2) ист. постоянного действия – разрыв (х.х.)   3) источник гармонического действия - сопротивление     При любых источниках есть два варианта: 1) нулевые нач. условия (uC(0-)=0). т.е. нет запаса энергии, то uC(0)=0 - перемычка
 
 

 

 


2) Ненулевые нач. условия – источник напряжения

 


В общем случае до и после коммутации схемы замещения могут быть разными (до коммутации мог быть один источник подключен, а после другой).

Классический метод анализа переходных процессов

в электрических цепях

 

Классический метод расчета переходных процессов основан на непосредственном решении системы дифференциальных уравнений, составленных для электрической цепи на основе законов Кирхгофа. В этом случае переходные токи и напряжения ищутся в виде двух составляющих: свободной и принужденной или установившейся

Установившаяся (принужденная) составляющая является частным решением неоднородного уравнения или системы и определяется действующими источниками (постоянного, переменного или периодического действия). Свободная составляющая соответствует поведению цепи в свободном режиме, без источников и соответствует математически общему решению однородного дифференциального уравнения или системы, и ищется как сумма экспонент:

,

где Pl – (показатели экспонент) корни характеристического уравнения, соответствующего дифференциальному (они одинаковы для всех величин токов и напряжений цепи и их количество определяется старшей степенью уравнения), а Aкl - множители, определяемые с применением начальных и конечных условий (они разные).

<== предыдущая лекция | следующая лекция ==>
Вопросы для самостоятельной подготовки | Переходные процессы в электрических цепях первого порядка
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1165; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.