Пусть дана некоторая функция f (x) и требуется найти все или некоторые значения x, для которых
f (x) = 0. (2.1)
Значение x*, при котором f (x*) = 0, называется корнем (или решением) уравнения (2.1).
Относительно функции f (x) часто предполагается, что f (x) дважды непрерывно дифференцируема в окрестности корня.
Корень x* уравнения (2.1) называется простым, если первая производная функции f (x) в точке x* не равна нулю, т. е. f '(x*) 0. Если же f '(x*) = 0, то корень x* называется кратным корнем.
Геометрически корень уравнения (2.1) есть точка пересечения графика функции y = f (x) с осью абсцисс. На рис. 2.1 изображен график функции y = f (x), имеющей четыре корня: два простых (x и x ) и два кратных (x и x ).
Рис. 2.1.
Большинство методов решения уравнения (2.1) ориентировано на отыскание простых корней уравнения (2.1).
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление