КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f (x), осью абсцисс и прямыми x = a и x = b (рис. 5.1).
Рис. 5.1
Разобьем отрезок [ a, b ] на n равных частей длиной h, так, что h = . При этом получим точки a = x 0 < x 1 < x 2 < … < xn = b и xi+ 1 = xi + h, i = 0, 1, …, n – 1 (рис. 5.2)
Рис. 5.2 Заменим приближенно площадь криволинейной трапеции площадью ступенчатой фигуры, изображенной на рис. 5.3.
Рис. 5.3
Эта фигура состоит из n прямоугольников. Основание i -го прямоугольника образует отрезок [ xi, xi+ 1] длины h, а высота основания равна значению функции в середине отрезка [ xi, xi+ 1], т е. f (рис. 5.4).
Рис. 5.4
Тогда получим квадратурную формулу средних прямоугольников: I =» I пр = (5.3)
Формулу (5.3) называют также формулой средних прямоугольников. Иногда используют формулы
I» I = , (5.4) I» I = , (5.5)
которые называют соответственно квадратурными формулами левых и правых прямоугольников. Геометрические иллюстрации этих формул приведены на рис. 5.5 и 5.6.
Рис. 5.5
Рис. 5. 6 Оценка погрешности. Для оценки погрешности формулы прямоугольников воспользуемся следующей теоремой. Теорема 5.1. Пусть функция f дважды непрерывно дифференцируема на отрезке [ a, b ]. Тогда для формулы прямоугольников справедлива следующая оценка погрешности:
| I – I пр | £ h 2, (5.6) где M 2 = | f "(x)| Пример 5.1. Вычислим значение интеграла по формуле средних прямоугольников (5.3) с шагом h = 0.1. Составим таблицу значений функции e (табл. 5.1):
Таблица 5.1
Производя вычисления по формуле (5.3), получим: I пр = 0.74713088.
Оценим погрешность полученного значения. Имеем: f "(x) = (e)" = (4 x 2 – 2) e. Нетрудно убедиться, что | f "(x)| £ M 2 = 2. Поэтому по формуле(5.4)
| I – I пр | £ (0.1)2 » 0.84× 10-3.
Дата добавления: 2014-01-05; Просмотров: 447; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |