КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение неразрывности. Расход
Классификация потоков жидкости. Рассмотрим наиболее общий случай движения жидкости – пространственное неустановившееся движение. Это движение характеризуется тем, что скорость движения жидкости в каждой точке пространства является функцией четырех переменных – трех координат и времени . Наряду с общим случаем движения жидкости выделяется несколько других видов движения. 1. Установившееся движение жидкости – это такое движение, при котором скорость жидкости в фиксированной точке не изменяется во времени, то есть скорость зависит только от координат точки пространства , если же скорость зависит от времени, то движение называется неустановившимся. 2. Плоскопараллельное или двумерное течение жидкости – это течение, при котором в любом сечении, перпендикулярном некоторой оси, движение жидкости одинаково. Такое течение в чистом виде практически не встречается, но в некоторых случаях пространственное движение может быть сведено к плоскопараллельному. Например, при поперечном обтекании длинного цилиндра (рис.17), в сечениях А и В, а также в любых параллельных им сечениях, удаленных от концов цилиндра, течение жидкости будет одинаковым и не зависящим от переменной x. При этом можно ограничиться рассмотрением течения жидкости только в одном из этих сечений, т. е. на плоскости yz. Скорость в этом случае будет зависеть только от двух координат и времени . 3.Осесимметричное движение жидкости, которым называется движение, имеющее ось симметрии (ось x на рис.18). Оно образуется при движении жидкости в трубах круглого сечения или при обтекании тел вращения. Такое движение удобно представлять в цилиндрической системе координат x,r,q. В силу того, что течение имеет ось симметрии, картина течения в любой плоскости (А-А), проходящей через ось симметрии, будет одинаковой и не зависящей от переменной q: . Все три выделенные вида течения жидкости отличаются от общего случая трехмерного неустановившегося движения тем, что в каждом из них скорость является функцией только трех переменных. Это значительно облегчает расчет таких течений, в силу чего они очень часто используются при решении различных теоретических и практических задач. Любое движение жидкости должно удовлетворять закону сохранения материи (массы). Применительно к движущейся жидкости этот закон выражается уравнениями неразрывности. В общем случае закон сохранения материи имеет вид , где М – масса рассматриваемого объема жидкости V. Так как масса M=rV, закон сохранения материи для однородной жидкости, когда r=const, принимает форму или , (3.3) то есть для однородной несжимаемой жидкости закон сохранения массы переходит в закон сохранения объема. Введем понятие расхода жидкости. Расходом Q называется количество жидкости, протекающее через поверхность в единицу времени. Расход может быть объемным QV и массовым Qm. Объемный расход измеряется в м3/с, а массовый – в кг/с, . Понятие объемного расхода используется для формулировки уравнения неразрывности, которое имеет три основных формы: интегральную, гидравлическую и дифференциальную. А). Интегральная форма уравнения неразрывности. Для ее получения мысленно поместим в поток движущейся жидкости поверхность площадью S (рис.19), на которой выделим элементарную площадку dS. Скорость жидкости в месте расположения площадки dS, может быть разложена на нормальную составляющую vn и касательную составляющую vt. Перенос жидкости через площадку dS может осуществляться только за счет нормальной составляющей скорости. При этом объемный расход жидкости через площадку dS . Объемный расход жидкости, протекающей через всю поверхность S, равен . (3.4) Расход жидкости через замкнутую поверхность, в соответствии с законом сохранения объема (3.3), равен нулю, так как количество втекающей жидкости должно быть равно количеству вытекающей жидкости, т. е. , (3.5) где кружок на знаке интеграла означает замкнутую поверхность. Выражение (3.5) называется интегральной формой уравнения неразрывности. Б). Гидравлическая форма уравнения неразрывности. Рассмотрим участок элементарной жидкой струйки (жидкой струйки с малым поперечным сечением), показанной на рис.20, и выделим в ней два сечении, перпендикулярные линиям тока, которые называются живыми сечениями 1-1 и 2-2, с площадями dS1 и dS2 соответственно. Ввиду малости сечения жидкой струйки можно считать скорости в каждой точке сечения одинаковыми и равными в рассматриваемых сечениях v1 и v2 соответственно. Объемный расход в первом сечении , а во втором . Так как через боковую поверхность жидкой струйки перетекания жидкости нет (по определению жидкой струйки на боковой поверхности ), то вся жидкость из сечения 1-1 перейдет в сечение 2-2, то есть или . Сечения 1-1 и 2-2 были выбраны совершенно произвольно, поэтому можно считать, что вдоль жидкой струйки расход остается постоянным . Теперь рассмотрим поток конечных размеров, ограниченный твердыми стенками (рис.21). Из-за конечности размеров потока скорости в каждом живом сечении (1-1) и (2-2) нельзя считать постоянными, в связи с чем расход в сечениях определяется по формуле (3.4) , и . Так как через твердые стенки, так же как и через линии тока, нет перетекания жидкости, то . Введем понятие средней скорости, которой называется условная постоянная по сечению скорость, дающая расход, равный действительному. На рис.22 показано действительное распределение скоростей по сечению потока и средняя скорость. Из определения средней скорости следует, что . Тогда и , а так как и здесь сечения выбирались произ-вольно, то уравнение неразрывности в гидравлической форме можно записать в виде . (3.6) Таким образом, при движении несжимаемой жидкости по трубам, уменьшение площади поперечного сечения потока приводит к увеличению его средней скорости, и наоборот. В). Дифференциальная форма уравнения неразрывности. Поместим мысленно в поток движущейся жидкости неподвижную систему координат и связанную с ней замкнутую поверхность в виде элементарного прямоугольного параллелепипеда со сторонами Dx, Dy, Dz (рис.23), через который протекает жидкость. Подсчи-таем расход жид-кости через выбранную по-верхность. Нор-мальная скорость к площадке 12341 в выбранной системе координат vn=vz и элементарный рас-ход через эту грань Q12341=vzDxDy. Нормальная составляющая скорости через противоположную грань 56785 в общем случае не равна vz и может быть представлена в виде , а расход через нее . Условимся за положительное считать направление, совпадающее с внешней нормалью к поверхности по отношению к объему, ограниченному этой поверхностью. Тогда общий расход через две рассмотренные поверхности Соответственно через каждую пару оставшихся граней расход равен , . Так как в силу закона сохранения объема (3.3) общий расход жидкости через рассматриваемую замкнутую поверхность параллелепипеда должен быть равен нулю, то Так как объем параллелепипеда DV=DxDyDz ¹0, то полученное равенство можно на него разделить и получить уравнение неразрывности в дифференциальной форме (3.7)
Дата добавления: 2014-01-05; Просмотров: 896; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |