КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение задачи синтеза
Решение задачи синтеза основано на формировании внутри регулятора упрежденного вектора состояния . модифицированного объекта управления. Формирование вектора осуществляется с помощью модели объекта, входящей в структуру оптимального регулятора. Таким образом, оптимальный закон управления должен иметь вид . (4.10) или в раскрытом виде . (4.11) Такой подход позволяет вычислить компоненты вектора обратных связей регулятора для объекта без учета запаздывания. Задача определения оптимального управляющего сигнала распадается на две подзадачи: 1). Задача вычисления вектора для системы без запаздывания. 2). Задача формирования упрежденного сигнала .
4.4. Вычисление вектора Вычисление вектора осуществляется через элементы матицы Риккати , (4.12) где матрица Р является единственным положительно определенным решением нелинейного матричного уравнения Риккати . (4.13) Раскрывая уравнение Риккати, получим Для упрощения записей введем обозначения , . Произведя перемножения матриц, получим Это матричное уравнение распадается на систему алгебраических уравнений вида ; ; ; . Из четвертого уравнения вычисляем ; . (4.14) Из первого уравнения путем решения квадратного уравнения находим . (4.15) Из второго уравнения вычисляем . (4.16) Раскрыв выражения для (подставляя в него ) получим ; . (4.17) Знание матрицы Риккати P позволяет наряду с получением коэффициентов вектора , также вычислить численное значение минимальной величины интегрального квадратичного критерия качества . (4.18) 4.5. Нахождение выражения для Известно, что для объекта без запаздывания уравнение описывающее движение компонент его вектора состояния имеет вид: . (4.19) Первая часть выражения является свободной составляющей, которая зависит от динамических свойств объекта управления (матрицы A) и от вектора начальных условий , который характеризует величину начального отклонения системы от положения равновесия. Интеграл является вынужденной составляющей, определяемой как динамическими свойствами объекта (матрицы A и B), так и видом управляющего сигнала U(S) . При учете запаздывания в канале управления в уравнении (4.19) вместо сигнала U(S) должен использоваться запаздывающий сигнал . Тогда уравнение (4.19) примет вид . (4.20) Из выражения (4.20) получим упрежденный сигнал вектора состояния Выделим , и разобьем интеграл на две части Вынесем за скобки Заменив выражение в квадратных скобках на X(t) получим формулу для упрежденного вектора состояния . (4.21) Сделав замену переменной в выражении (4.21) , (4.22) окончательно получим . (4.23)
Дата добавления: 2014-01-06; Просмотров: 452; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |