КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принцип работы диода
Полупроводниковые диоды Основой современных полупроводниковых приборов является кремний или германий. Чтобы полупроводниковый элемент был пригоден для создания электронного устройства, в него необходимо добавить примесь. Существует два типа полупроводников c примесями: n–типа и p–типа. Для получения полупроводника n–типа в него добавляют донорную примесь (например, мышьяк, сурьма), которая обеспечивает появление в межатомном пространстве свободных электронов, а в кристаллической решетке появляется такое же количество неподвижных положительных ионов донора. Для получения полупроводника р–типа в него добавляют акцепторную примесь (например, индий, галлий), которая обеспечивает появление в межатомном пространстве свободных дырок, а в кристаллической решетке появляется такое же количество неподвижных отрицательных ионов акцептора. Дырка – это место в кристаллической решетке полупроводника, где недостает электрона. Положительный ион – это атом, потерявший электрон, а отрицательный ион – это атом, получивший электрон. В твердых телах атомы неподвижны, т.к. закреплены в узлах кристаллической решетки. В полупроводниках n–типа ток переносят отрицательно заряженные частицы – электроны, а в полупроводниках p–типа – положительно заряженные частицы – дырки. Перемещение дырок – это перемещение мест с отсутствующими электронами в результате движения электронов. Основой полупроводникового диода является двухслойная структура, созданная на основе кристалла полупроводника, имеющего две области. В одну область кристалла вводится донорная примесь (n- область), а в другую – акцепторная (p- область). Структура полупроводникового диода имеет вид, показанный на рис.1. Граница раздела двух областей с различной проводимостью называется. p-n переходом. Из-за встречной диффузии через p-n переход дырок (из р- в n- область) и электронов (из n- в р- область) в тонком слое вблизи p-n перехода происходит рекомбинация (взаимная компенсация) дырок и электронов (дырки заполняются электронами). В результате между р- и n- областями образуется так называемый обедненный слой, который имеет очень мало свободных носителей заряда. Как только электроны покидают n- область, в ней начинает действовать суммарный заряд лишних положительных ионов, который будет тянуть свободные электроны обратно и препятствовать их движению в сторону р-n перехода. Точно также, когда дырки покидают p- область, в ней начинает действовать суммарный заряд лишних отрицательных ионов, который будет тянуть свободные дырки обратно и препятствовать их движению в сторону р-n перехода. Заряды неподвижных ионов примесей оказываются не скомпенсированы и создадут по обе сторо
Для того, чтобы сменить состояние триггера на противоположное, необходимо подать сигналы на вход R или S. Входные сигналы обычно являются импульсными. Наличие напряжения на входе S (S=1) устанавливает Q=1, а наличие напряжения на входе R (R=1) устанавливает Q=0. Одновременная подача сигнала на входы S и R запрещена, т.к. триггер при этом перестаёт быть триггером (не будет противоположного состояния Q и ). Диаграммы работы при наличии входных импульсных сигналов показаны на рис. 159. На интервале между импульсами на входах S и R триггер помнит то состояние, в которое он был установлен по этим входам, т.е. триггер - элемент памяти. Расчет элементов схемы. Триггер в большинстве случаев является симметричной схемой, поэтому Rк1=Rк2, Rб3=Rб4 и можно рассчитывать половинку триггера. Уравнения для расчета: Iб=Iк/(1,5¸2) h21э, где (1.5¸2) -коэффициент насыщения; Iк=Uп/Rк. Сопротивления Rк1 и Rк2 обычно заданы, поэтому Iк известен, тогда Rб=UQ/Iб. Выражение для UQ -смотри выше.
Дата добавления: 2014-01-06; Просмотров: 449; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |